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Abstract

The standard geostatistical problem is to predict the values of a spatially continu-
ous phenomenon, S(x) say, at locations x using data (yi, xi) : i = 1, .., n where yi is the
realisation at location xi of S(xi), or of a random variable Yi that is stochastically re-
lated to S(xi). In this paper we address the inverse problem of predicting the locations
of observed measurements y. We discuss how knowledge of the sampling mechanism
can and should inform a prior specification, π(x) say, for the joint distribution of the
measurement locations X = {xi : i = 1, ..., n}, and propose an efficient Metropolis-
Hastings algorithm for drawing samples from the resulting predictive distribution of
the missing elements of X. An important feature in many applied settings is that this
predictive distribution is multi-modal, which severely limits the usefulness of simple
summary measures such as the mean or median. We present three simulated examples
to demonstrate the importance of the specification for π(x) and show how a one-by-one
approach can lead to substantially incorrect inferences in the case of multiple unknown
locations. We also analyse rainfall data from Paraná State, Brazil to show how, under
additional assumptions, an empirical of estimate of π(x) can be used when no prior
information on the sampling design is available.
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1 Introduction

Geostatistics was originally developed as a self-contained methodology for spatial prediction
(e.g. Mathéron (1963)) but is now embedded as a sub-branch of spatial statistics with
applications in many different disciplines. The canonical geostatistical problem is to predict
the value of a spatially continuous process, S(x) say, at any required location x in a region of
interest A ⊂ R2, using data consisting of a set of measured values yi at each of n locations xi
in A. A widely used geostatistical model is that the yi are realisations of random variables
Yi = S(xi) + Zi, where Zi are mutually independent, zero-mean Gaussian variables, and
S = {S(x) : x ∈ R2} is a Gaussian process (Diggle et al., 1998). Predictive inference for
S is then based on the predictive distribution [S|Y ], where [·] means “the distribution of”
and Y = (Y1, ..., Yn). Conventionally, the set of measurement locations X = (x1, ..., xn) is
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