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a b s t r a c t

Studying phenomena that follow a skewed distribution and entail
an extremal behaviour is important in many disciplines. How to
describe and model the dependence of skewed spatial random
fields is still a challenging question. Especially when one is
interested in interpolating a sample from a spatial random field
that exhibits extreme events, classical geostatistical tools like
kriging relying on the Gaussian assumption fail in reproducing
the extremes. Originating from the multivariate extreme value
theory partly driven by financial mathematics, copulas emerged
in recent years being capable of describing different kinds of joint
tail behaviours beyond the Gaussian realm. In this paper spatial
vine copulas are introduced that are parametrized by distance
and allow to include extremal behaviour of a spatial random
field. The newly introduced distributions are fitted to the widely
studied emergency and routine scenario data set from the spatial
interpolation comparison 2004 (SIC2004). The presented spatial
vine copula ranks within the top 5 approaches and is superior to
all approaches in terms of the mean absolute error.
© 2014 The Author. Published by Elsevier B.V. All rights reserved.

1. Introduction

Interpolation of spatial random fields is a common task in geostatistics. Simple approaches like
inverse distance weighted predictions or the well known kriging procedures have routinely been
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applied for many years. However, when the underlying assumptions (i.e. Gaussianity) of these
approaches are hard to be fulfilled, alternatives are needed. Copulas have been used in different
but few applications in the domain of spatial statistics. Bárdossy (2006) was one of the first who
applied copulas in a geostatistical context. Some recent advances incorporating copulas in this field
have for instance been published by Kazianka and Pilz (2011, 2010a), Bárdossy (2011), Bárdossy and
Pegram (2009) or Bárdossy and Li (2008). They use a comparatively small set of copula families to
model spatial processes. Copulas describing the dependence structure of extremes can for instance
be found in Grimaldi and Serinaldi (2006), Salvadori and De Michele (2013), Salvadori et al. (2011)
or Kao andGovindaraju (2010). These applications typically investigatemultivariate extremeswithout
addressing spatial dependence.

The set of methods to model spatial data including extremes is diverse. The different approaches
go beyond the field of geostatistics (e.g. Fournier and Furrer, 2005) and incorporate techniques such
as neural networks (e.g. Timonin and Savelieva, 2005) or support vector machines (e.g. Pozdnoukhov,
2005) as presented in the spatial interpolation comparison 2004 (SIC2004: Dubois and Galmarini,
2005a). Typically studied spatial phenomena exhibiting extremes are for example radioactive
radiation, as in SIC2004, rainfall data (Haberlandt, 2007) or air quality indicators (Horálek et al., 2007).

The advantage of the spatial vine copula approach presented in this paper is its flexibility in
the selection of appropriate copula families through bivariate spatial copulas. Schepsmeier (2013)
suggests an approach where the tree structure of the vine is derived through spatial distances, but
the copula families do not change with distance. Another approach modelling several air-quality
indicators across a set of stations is briefly introduced by Brechmann (2013) using a hierarchical
Kendall copula.

The introduction of a bivariate spatial copula into a vine copula for interpolation has been described
by Gräler and Pebesma (2011) and is extended in this paper. Convex combinations of bivariate copulas
parametrized by distance are combined in a vine copula (also known as pair-copula construction: Aas
et al., 2009; Bedford and Cooke, 2002) for a local neighbourhood. Adding marginal distributions to
the spatial vine copula yields a full multivariate distribution describing a local spatially dependent
distribution of the observed phenomenon.

In the following, we will assume a spatial random field Z : Ω × S → R defined over some spatial
domain of interest S and probability space Ω . Typically, a sample Z =


z(s1), . . . , z(sn)


has been

observed at a set of distinct locations s1, . . . , sn ∈ S. Often, one is interested in modelling Z from the
sample Z in order to predict Z(s0) at unobserved locations s0 ∈ S or to simulate the spatial random
field.

The remainder of this paper is organized as follows. The theoretical background of copulas,
bivariate spatial copulas and vine copulas yielding the spatial vine copulas, which are the driving
probabilistic tool in the applications, are addressed in the following section. A strategy to estimate
a spatial vine copula is illustrated in Section 3. Section 4 discusses different uses of the multivariate
distribution such as the possibility to predict values at unobserved locations or simulate from the
spatial random field. An application is illustrated in Section 5whereweuse the emergency and routine
scenario data sets from the SIC2004 (Dubois and Galmarini, 2005a). Results are discussed in Section 6.
Conclusions are drawn in Section 7.

2. Spatial vine copulas

Copulas describe the dependence between the margins of multivariate distributions. Sklar
(1959) proofed that any multivariate distribution H can be split into its margins F1, . . . , Fn and
the copula C which couples the margins with a given dependence structure: H(x1, . . . , xn) =

C

F1(x1), . . . , Fn(xn)


. Many different families exist allowing for very different dependence structures.

A copula can be imagined as amultivariate cumulative distribution function on the unit (hyper-) cube
with uniformmargins where its density reflects the strength of dependence between themargins. For
further details we refer to the introductory book by Nelsen (2006).

Sklar’s Theorem is true for any dimension d ≥ 2, but we will at first only consider bivariate
copulas C : [0, 1]2 → [0, 1]. The density of a copula (denoted as c) expresses the strength of
dependence which changes over the range of the marginal distributions. The only copula exhibiting a



Download English Version:

https://daneshyari.com/en/article/7496655

Download Persian Version:

https://daneshyari.com/article/7496655

Daneshyari.com

https://daneshyari.com/en/article/7496655
https://daneshyari.com/article/7496655
https://daneshyari.com

