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a b s t r a c t

A new spatial scan statistic is proposed for identifying clusters in
marked point processes. Contrary to existing methods, it does not
rely on a likelihood ratio and thus is completely distribution-free.
It applies whatever the nature of the marks: binary, discrete or
continuous. This spatial scan test seems to be very powerful against
any arbitrarily-distributed cluster alternative. I apply this method
first to a classical epidemiological dataset and then to the spatial
distribution of incomes in France.
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1. Introduction

Cluster detection has become a very fruitful research subject since the earlier work of Naus (1963):
a thorough review of the proposed methods, which have been applied to many different fields of
application, is given by Glaz et al. (2001).

Most of the cluster detection methods are designed for count data, i.e. point processes made of the
random coordinates of n events observed in S, a bounded subset of Rd: the goal is to identify, if they
exist, the areas in which the concentration of events is abnormally high. Since the article by Cressie
(1977), the scan statistic denotes the maximal concentration observed on a collection of potential
clusters. Originally, the size of all the potential clusters had to be the same, so that the scan statisticwas
just themaximum number of events in a window of size d, d being fixed a priori. This major drawback
vanished when Kulldorff (1997) introduced the scan statistic based on generalized likelihood-ratio
(GLR) in a Poisson model, which allows to compare the concentration in windows having different
sizes. In the same article, the Bernoulli model scan statistic is defined to analyse point processes with
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binary marks, such as case/control data: if the marks of the cases are 1 and those of the controls are
0, the goal is to identify the areas in which the marks are significantly higher, i.e. the areas where
there are significantly more cases, taking into account the number of controls. Later on, Kulldorff et al.
(2009) introduced the Gaussian model scan statistic which allows to analyse point processes with
continuous marks.

For the analysis of point processes on the line, Cucala (2008) suggested that the use of a non-
parametric concentration indexmay bemore powerful to detect cluster presence than the ones based
on likelihood-ratio tests, such as the one introduced by Nagarwalla (1996). Thus, in order to analyse
spatial marked point processes, I may look for a concentration index only relying on the distribution-
free (DF) null hypothesis H0: ‘‘the marks are realizations of independent and identically distributed
random variables’’. Very recently, Cucala (in press) defined a Mann–Whitney scan statistic based on
the same hypothesis but, as it relies only on the ranks of the marks, it is only suitable for continuous
marks.

In this article I introduce a scan statistic for any kind ofmarked point processes. Section 2 describes
the scan statistic and its computational aspects in the framework of marked point processes. The scan
statistic is then applied to real and simulated datasets in Section 3. The paper is concluded with a
discussion.

2. A distribution-free scan statistic

Let {(xi, si), i = 1, . . . , n} denote the realization of a marked point process, where si ∈ S is the
spatial location of the event and xi ∈ R its associated mark. The area S ⊂ Rd is the observation do-
main and the spatial locations are usually bidimensional (d = 2). Our goal is to detect the spatial area
Z ⊂ S in which the marks are significantly different (higher or lower) than elsewhere.

Most of the spatial cluster detection methods consist in maximizing (or minimizing) a
concentration index in a collection of potential clusters. Thus the two questions to answer are: how
to choose the potential clusters and which concentration index should be used?

Concerning the potential clusters, I will focus on circular clusters, such as (Kulldorff, 1997). The set
of potential clusters, denoted by D , is the set of discs (or balls if d = 3) centred on a location and
passing through another one:

D = {Di,j, 1 ≤ i ≤ n, 1 ≤ j ≤ n}
where Di,j is the disc (or the ball) centred on si and passing through sj. Since the disc may have null
radius (if i = j), the number of potential clusters is n2.

As said in the Introduction, most of the concentration indices are based on generalized
likelihood ratio and the choice of the underlying distribution, as mentioned by Cucala (2008) in the
unidimensional context, may lead to very different results. The concentration index I introduce here is
only based on the DF null hypothesisH0 given in the Introduction, without specifying any distribution.
In the works by Kulldorff (1997) or Kulldorff et al. (2009), the null hypothesis is the same but the
distribution of the marks is mentioned (Bernoulli, Poisson or Gaussian). All these studies rely on the
assumption that the variances of the marks are all equal. A work by Huang et al. (2009) extends the
Gaussian scan statistic to the marks with unequal variances, for example when the marks are means
computed on different population sizes and the individual data are not available. Thus I first give
the details of my distribution-free method when variances are assumed to be equal, and then an
heteroskedastic version taking into account unequal variances.

2.1. The homoskedastic version

From now on, I assume H0 is true. Let X1, . . . , Xn denote the i.i.d. random variables associated to
the marks. I will assume that the distribution of the marks has a second moment so that

E(Xi) = µ and V(Xi) = σ 2 for all i
and

Cov(Xi, Xj) = 0 if i ≠ j.
The common expectation µ and variance σ 2 of the Xi’s are unknown.
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