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a b s t r a c t

Conditional autoregressive CARmodels, possibly with added noise,
unilateral ARMA models, and directly specified correlation DC
models, are widely used classes of spatial models. In this paper,
we consider their generalisation to all models with a rational
spectral density function. These models allow a wider range
of correlation behaviour, and can provide adequate fits to data
with fewer parameters. Some theoretical properties are presented,
and comparisons made with CAR correlations. Some methods for
estimation are discussed, and fits to some real data are compared.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Large amounts of essentially-continuous spatial data are associated with the nodes or interiors
of a regular rectangular lattice. Examples include pixellated images which occur in many different
applications, regularly-sampled spatial data, and many agricultural field trials. Different types of
models have been proposed for analysing such data. Four main classes are: (i) those with a directly
specified correlation structure, such as those used in geostatistics; (ii) those specified by a generating
model involving ‘past’ (using some site ordering) values and uncorrelated innovations—unilateral
(or causal) autoregressive-moving average ARMA models; (iii) those specified by a formal equation
involving ‘past’ and ‘future’ values and uncorrelated errors – simultaneous autoregressions SAR; and
(iv) those that specify the conditional distribution at each site given the values at all other sites –
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conditional autoregressive CAR models. An extension to SAR and CAR models adds an independent
noise term.

We (essentially) only consider univariate stationary Gaussian models here—i.e. they have finite
variance, and the correlation between the observations at two sites only depends on the relative
positions of the two sites. The assumption of Normality for analysing a data set is convenient and
often reasonable (perhaps after transformation).We assumemodels are defined on an infinite regular
rectangular lattice, and applied to data on a complete finite lattice. Then a CAR, also known as a
Gauss–Markov random field, is defined by its conditional means. Every unilateral AR, and every SAR,
is equivalent to a CAR (in the sense of having the same correlation structure).

Since many unilateral ARMA models depend on the choice of site ordering, they can appear
arbitrary, but they can have some useful properties, especially if the model is separable (i.e. the
correlation function is a product of lower-dimensional correlation functions). For example, simulation
and likelihood evaluation can be simple. SAR models have some severe logical difficulties (e.g. the
errors are correlated with all the observations, and in general the parameters are not uniquely
determined).

In general, the correlation structure of a CARmodel is hard to determine (except numerically), but
the inverse correlations are directly specified. On a planar lattice, this givesmost, but not all, elements
of the inverse dispersion matrix which is required for Gaussian maximum likelihood estimation—see
Section 6.1. Another computational difficulty with many CAR models used in practice is that unless
the dependence is weak, the parameters are usually very close to the stationarity boundary. Since the
correlations of a CAR can decay very slowly from 1, the extension to the noisy CAR has been found
useful.

Geostatistical models are defined for continuous space, and are widely used for analysing data
defined on irregular sites or regions—see, for example, Cressie (1993, Section 2.3.1). On a regular
lattice, they and other models specifying the correlations usually have the drawback that the inverse
dispersion matrix does not have a simple form. These lattice models, and moving-average models, in
general have an infinite CAR representation.

In time series, the extension of AR and MA models to the ARMA models, which have a rational
spectral density, has been extremely useful. The unilateral ARMA models on a lattice have a rational
spectral density, but are only a subset of all the possibilities. In this paper, we consider the
generalisation of finite CARs, unilateral ARMAs, and finite DCs (directly-specified correlation models
for which the correlations are 0 outside a neighbourhood of the origin), to all models with a rational
spectral density function—RSDs. The RSDs in general have more possible correlation structures, and
can give more parsimonious fits to data. Also, they are less likely than CARs to have the estimated
parameters very close to the stationarity boundary.

After reviewing the standard lattice models in Section 2, the RSD model is defined and some of its
properties discussed in Section 3. We show how RSDs can arise from operations on CARs in Section 4,
and compare their correlations with those of CARs in Section 5. Section 6 discusses how standard
methods formodel fitting and identification can be extended to RSDs, and in Section 7, fits ofmodels to
real data are compared. Note that the results in Sections 2–5 only depend on second-order properties,
and so hold for any distribution. For convenience,wemainly refer here toGuyon (1995), Cressie (1993)
and Rue and Held (2005) for known results.

2. Lattice models

In this section we discuss the usual lattice models. We begin with some definitions in Section 2.1,
and then review the usual AR, SAR, MA, ARMA, CAR, and DC lattice models in Sections 2.2 and 2.3.
Some extensions are given in Section 2.4.

2.1. Preliminaries

Suppose that t, u, z and λ are d-dimensional vectors, and assume that {x(t), t ∈ Zd
} is a second-

order stationary random field on the regular rectangular lattice, with mean zero, autocovariance
function Rx(u) = Cov {x(t), x(t + u)}, and autocorrelation function rx(u) = Rx(u)/σ 2

x , where σ 2
x =



Download English Version:

https://daneshyari.com/en/article/7496700

Download Persian Version:

https://daneshyari.com/article/7496700

Daneshyari.com

https://daneshyari.com/en/article/7496700
https://daneshyari.com/article/7496700
https://daneshyari.com

