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a b s t r a c t

Kriging of very large spatial datasets is a challenging problem.
The size n of the dataset causes problems in computing the
kriging estimate: solving the kriging equations directly involves
inverting an n×n covariancematrix. This operation requires O(n3)
computations and a storage of O(n2). Under these circumstances,
straightforward kriging of massive datasets is not possible. Several
approaches have been proposed in the literature among which
two main families exist: sparse approximation of the covariance
function and low rank approaches. We propose here an approach
that is built upon a low rank approximation of the covariance
matrix obtained by incomplete Cholesky decomposition. This
algorithm requires O(nk) storage and takes O(nk2) arithmetic
operations, where k is the rank of the approximation, whose
accuracy is controlled by a parameter. We detail the main
properties of this method and explore its links with existing
methods. Its benefits are illustrated on simple examples and
compared to those of existing approaches. Finally, we show that
this low rank representation is also suited for inverse conditioning
of Gaussian random fields.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

While a spatial datum was expensive to obtain in the traditional application fields of geostatistics
(e.g. drilling wells for oil reserve estimation), with the development of remote sensing platforms
on satellites or planes, spatial database paradigms have moved from small to massive. Therefore,
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new methods for the geostatistical analysis of large datasets have been developed. Indeed, richer
datasets allow for more complex modeling but may also prevent the straightforward use of classical
techniques. The challenge of handling such datasets is to extract the maximum of information that
they contain while ensuring the numerical tractability of the interpolation algorithms.

Conventional geostatistical interpolation methods such as kriging are made numerically
intractable by the size of the dataset. Indeed, solving the kriging equations directly involves the
inversion of an n × n variance–covariance matrix C , which requires O(n3) computations. Under
these circumstances, straightforward kriging of massive datasets is not possible. In practice, kriging
is achieved approximately by local approaches that are based on considering only a relatively small
number of points that lie close to the query point. Determining the proper neighborhood size is usually
solved by ad hoc methods such as selecting a fixed number of nearest neighbors or all the points
lying within a fixed radius. Such fixed neighborhood sizes may not work well for all query points,
depending on the local density of the point distribution. Local methods also suffer from the problem
that the resulting interpolant is not continuous, even though approaches have been proposed to tackle
the latter; see Gribov and Krivoruchko (2004) and in a more general context Rivoirard and Romary
(2011). Furthermore, the larger the dataset, the lower the prediction variance: the most accurate
prediction cannot be obtained with a subsample. Finally, if a non-stationary covariance model is
used (see e.g. Gelfand et al., 2011) a small neighborhood will not be able to capture the complex
correlation structure. For these different reasons, it is better to consider and solve the global system
for each interpolant. Solving such large dense systems for each query point is impractical however. To
tackle this problem, several approaches have been proposed in the literature for both prediction and
estimation, and are described below; see also Sun et al. (2012) for a review.

In this paper, we consider a zero-mean spatial random field {Z(x), x ∈ X ⊂ Rd
}, d ∈ N∗. We

denote by C(x, y) the covariance of Z, (x, y) ∈ X2, the covariance function. We assume throughout
the paper that the parameters of C are known. The kriging problem is to predict Z(x0), x0 ∈ X, given
the observation of Z at n locations x1, . . . , xn. The BLUP at an unobserved location x0 is

Z∗(x0) = C0
′C−1Z, (1)

where Z = (Z(x1), . . . , Z(xn))′, Cij = C(xi, xj) and C0i = C(xi, x0). The associated mean squared
prediction error is

σ(x0) = C(x0, x0) − C0
′C−1C0. (2)

Note that Z∗(x0) and σ(x0) are the conditional expectation and variance of Z(x0), given the
observations, under the Gaussian hypothesis.

This situation corresponds to the simple kriging with a known zero mean. Nonetheless, the
different approaches described in this paper can be used with any kriging technique (ordinary,
universal, etc.) by considering a blockwise matrix inversion.

The paper is organized as follows: In Section 2, we review the main existing approaches for the
kriging of large datasets. Then in Section 3, we detail the main properties of the incomplete Cholesky
decomposition when used for kriging and explore its links with existing methods. We then test the
sensitivity of the different approaches to various settings on toy examples in Section 4. Finally, in
Section 5, we discuss the use of incomplete Cholesky decomposition for dimension reduction in
inverse problems as well as its link with the predictive process approach.

2. Existing approaches

Most existing approaches have considered approximating the covariance function C in an attempt
to make the computation of C−1 computationally tractable. These have been classified into two main
categories: sparse approximation and low rank approximation. The combination of these is also
considered.
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