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A B S T R A C T

The availability of smart card data from public transport travelling the last decades allows analyzing current and
predicting future public transport usage. Public transport models are commonly applied to predict ridership due to
structural network changes, using a calibrated parameter set. Predicting the impact of planned disturbances, like
temporary track closures, on public transport ridership is however an unexplored area. In the Netherlands, this
area becomes increasingly important, given the many track closures operators are confronted with the last and
upcoming years. We investigated the passenger impact of four planned disturbances on the public transport
network of The Hague, the Netherlands, by comparing predicted and realized public transport ridership using
smart card data. A three-step search procedure is applied to find a parameter set resulting in higher prediction
accuracy. We found that in-vehicle time in rail-replacing bus services is perceived �1.1 times more negatively
compared to in-vehicle time perception in the initial tram line. Waiting time for temporary rail-replacement bus
services is found to be perceived �1.3 times higher, compared to waiting time perception for regular tram and bus
services. Besides, passengers do not seem to perceive the theoretical benefit of the usually higher frequency of
rail-replacement bus services compared to the frequency of the replaced tram line. For the different case studies,
the new parameter set results in 3% up to 13% higher prediction accuracy compared to the default parameter set.
It supports public transport operators to better predict the required supply of rail-replacement services and to
predict the impact on their revenues.

1. Introduction

The last decade, in several cities worldwide automated fare collection
(AFC) systems are introduced for the public transport system by public
transport operators and authorities. For these AFC systems, passengers
need to use a smart card for public transport travelling. Open systems in
which passengers only need to tap-in, as well as closed systems in which
both a tap-in and tap-out are required, are applied in practice. Although
the main purpose of the introduction of AFC systems was to enable an
easier way of revenue collection, additionally large amounts of data are
generated which can be used to get more insight in passengers' travel
behavior. Over the last years, data from AFC systems is used for many
purposes by scientists and practitioners on a strategic, tactical and
operational level (Pelletier et al., 2011). Data from AFC systems is for
example used for destination inference in case of open systems with
tap-in only (e.g. Tr�epanier et al., 2007; Nunes et al., 2016), transfer

inference (e.g. Hofmann and O'Mahony, 2005; Jang, 2010) and journey
inference to estimate origin-destination (OD) matrices (e.g. Seaborn
et al., 2009; Wang et al., 2011; Munizaga and Palma, 2012; Zhao et al.,
2007; Gordon et al., 2013). Other studies focus on fusion of smart card
data of different operators (e.g. Nij€enstein and Bussink, 2015) or clus-
tering public transport stops in order to identify and classify public
transport activity centers based on smart card data (Cats et al., 2015).

Next to the aforementioned studies which use smart card data to
describe, analyze, cluster and visualize current travel patterns, there are
also studies focusing on public transport ridership prediction based on
smart card inferred travel patterns. Idris et al. (2015) developed several
mode choice models based on revealed preference, contrary to tradi-
tional mode choice models having the tendency to overestimate public
transport ridership. Wei and Chen (2012) developed a forecasting
approach for short-term ridership predictions in metros using a combi-
nation of empirical mode decomposition and neural networks, whereas
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Li et al. (2017) predict metro ridership under special events using a
multiscale radial basis function (MSRBF) network. Ding et al. (2016)
predict metro ridership using gradient boosting decision trees, thereby
incorporating temporal features and bus transfer activities. In Van Oort
et al. (2015a) a smart card based prediction model is developed which
allows the prediction of effects of changes in public transport supply, like
increasing the frequency or rerouting public transport services. This
model considers the total urban public transport network and uses an
elasticity approach, where parameter values are obtained based on
revealed preference studies. Also effects of crowding can be incorporated
in this short-term ridership prediction model (e.g. Van Oort et al.,
2015b). This type of prediction model is of added value to improve
prediction accuracy of the impact of structural network changes, which
are usually implemented by operators on one or on a few fixed dates in
the year. However, in practice many public transport operators are
confronted with temporary closures of infrastructure many more times
per year. These temporary infrastructure closures are for example caused
by maintenance work, track renewal or redesign of public space. These
closures usually result in longer travel time, more transfers, lower rider
ship, lower passenger satisfaction, and less revenues. In the Netherlands,
a tendency can be observed of more, larger and more long-lasting rail
infrastructure closures. For example, HTM, the urban public transport
operator in Den Haag, the Netherlands, was confronted with more than
20 temporary track closures in 2015. It therefore becomes more urgent
for operators to predict the impact of these (planned) disturbances on
their passengers, ridership and revenues. This impact of temporary track
closures on demand and supply is different compared to the impact of
structural network changes. Passengers might be willing to postpone a
single trip, change their mode choice or route choice, or accept the use of
rail-replacement bus services for temporary situations. Operators on the
other hand have to accept the temporary reduction in level of service –

because of rail-replacement bus services, additional travel time and
transfers – and might accept the temporary additional operational costs
for these bus services and communication. It can be concluded that the
responses of passengers and operators differ in case of temporary
network changes, compared to structural network changes. In order to
predict passenger impacts of temporary network changes with sufficient
accuracy, other/additional parameters and/or different parameter values
in the public transport ridership prediction models are there-
fore required.

This study aims to improve the prediction accuracy of the impact of
planned, temporary disturbances on public transport usage. To this end,
in this study a new parameter set is calibrated and validated to predict
public transport ridership in case of planned disturbances. This param-
eter set is based on smart card data derived from AFC systems during
several planned disturbances which occurred in The Hague in 2015. The
study results in a new set of parameter values allowing to better predict
passenger impacts of planned disturbances in urban public trans-
portation. With this result, more insight is gained in passenger behavior
during disturbances. It also supports operators to predict the impact on
their revenues, and to better align supply of rail-replacement services on
alternative routes to the remaining demand, in order to efficiently use
their scarce resources. This paper is structured as follows. Chapter 2
describes the methodology to calibrate and validate the parameter set of
the ridership prediction model. Chapter 3 describes the case study
network to which the methodology is applied. Chapter 4 discusses the
results of this study. At last, in chapter 5 conclusions and recommenda-
tions for further research are formulated.

2. Methodology

2.1. Origin-destination matrix estimation

When travelling in trams or busses in the Netherlands by smart card,
passengers are required to tap-in and tap-out at devices which are located
within the vehicle. This means that in the Netherlands the passenger fare

is based on the exact distance travelled in a specific public transport
vehicle. Especially for busses, this is different from many other cities in
the world where often an open, entry-only system with flat fare structure
is applied, for example in London (Gordon et al., 2013) and Santiago,
Chile (Munizaga and Palma, 2012). This means that for each individual
transaction the boarding time and location, and the alighting time and
location of each trip leg are known. Also, it is known in which public
transport line and vehicle each passenger boarded and alighted with its
unique smart card number. This closed within-vehicle system therefore
eases the destination and journey inference, compared to open entry-only
systems. When merging this closed within-vehicle AFC system with
Automated Vehicle Location (AVL) data, also vehicle occupancies can be
inferred directly from the transaction data for each line segment
and vehicle.

For an urban public transportation network with tram and bus lines,
journeys can be inferred by combining registered trip legs made with the
same smart card ID. In this study we used a simple temporal criterion to
determine whether a passenger alighting is considered as final destina-
tion or as transfer. When the boarding time to a vehicle follows within a
certain time window after the alighting time of the previous trip leg made
with that same card, two AFC transactions are considered as one journey.
This approach is also used, for example, by Hofmann and O'Mahony
(2005) and Seaborn et al. (2009). We are aware that in scientific litera-
ture more advanced transfer inference algorithms have been developed
(e.g. Zhao et al., 2007; Munizaga and Palma, 2012; Gordon et al., 2013;
Yap et al., 2017). In Dutch practice however, operators apply only a time
window threshold between the previous alighting and next boarding as
transfer inference criterion. In order to compare the prediction accuracy
of the new proposed parameter set with the earlier operator predictions
with the default parameter set, we decided not to adjust the transfer
inference algorithm in this study. In this way, we can evaluate purely the
effects of our new parameter set on the prediction accuracy, while not
also changing the transfer inference algorithm simultaneously. In the
Netherlands, a maximum threshold transfer time of 35 min is applied to
classify trip legs made by the same smart card ID as one journey. By
aggregating all journeys, a stop-to-stop smart card based OD matrix can
be inferred. In the ridership prediction model, zones are located at the
stop locations. Only stop codes which belong to the same stop from a
passenger perspective, are aggregated to one zone. This means that stop
codes of platforms of the same stop in opposite directions, or stops
located at the same intersection, are represented by one zone. This is
done to prevent passenger travel patterns to be relying too strong on the
exact current stop codes of boarding and alighting in the undisturbed
scenario. Under assumption that the distribution of destinations j from
each origin i for non-card users is similar to the distribution of smart card
users, which is in line with the assumption applied by Munizaga and
Palma (2012) to correct for missing tap-outs, the zone-based OD matrix
can be scaled based on the small percentage of non-card users in the
Netherlands. Determination of the share of non-card users is based on
passenger counts.

When travelling by train or metro in the Netherlands, there is also a
closed system where transactions are required during boarding and
alighting. For train and metro, devices are however located at the station
gates. This means that train-train or metro-metro transfers, as well as
exact chosen routes cannot be determined directly from the data, and
that trip and transfer inference algorithms are necessary to obtain
these insights.

2.2. Public transport ridership prediction model

For the prediction of public transport usage in case of planned dis-
turbances, in this study the public transport ridership predictionmodel as
described in Van Oort et al. (2015a) is used as basis. For an urban public
transportation network, let the set of public transport stops and lines be
denoted by S and L respectively. Each line l 2 L is defined by an ordered
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