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a b s t r a c t

Cubic porous networks consisting of several millions of voids of different sizes are efficiently simulated
through a greedy algorithm. The porous network is built on the basis of the Dual Site-Bond Model in
which a cavity (site) is always larger than any of its delimiting throats (bonds). When the initial config-
uration of the cubic network is established by means of a random (Monte Carlo) seeding on a lattice of
sites and bonds, the proper allocation of more pore elements becomes troublesome and time-consuming,
and there even exists the chance of not achieving a valid pore network. The complexity of this pioneering
Monte Carlo algorithm, in the best case, increases according to the third power of the number of pore ele-
ments and, in the worst case is asymptotic to infinity. Here, we have succeeded in the development of an
smart non-mistake initial seeding situation of sites and bonds that behaves in the way of a greedy algo-
rithm. An initial ordering of sites according to their sizes allows a proper assemblage of these hollows
throughout the cubic lattice. From this configuration, the pore network evolves toward the most probable
one by a series of legitimate random swappings between sites and bonds. The complexity of the greedy
algorithm remained proportional to the cubic power of the total number of sites. In general the execution
time of the greedy algorithm results to be faster than that employed with the previous Monte Carlo
algorithm.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction: the conception of a porous network from the
concepts of sites and bonds

Porous media are complex systems in which a huge amount of
pore entities (usually millions, billions and even trillions of them
per unit mass of solid) are dispersed within the interior of a solid ma-
trix. The term complex applies due to the complicated morphology
that the voids can display and the intricate topological way in which
they can be distributed and interconnected. The dimensions of the
voids in a mesoporous solid range within the nanometric scale, i.e.
from 1 nm to 50 nm. These pores are generally interconnected to
each other to conform sinuous 3-D (and only occasionally simple)
pathways; nevertheless, with the progress of synthetic chemical
routes for the nanoscale preparation of mesoporous materials or-
dered 2- or 1-D porous networks have also been synthesized [1].

The importance of porous solids rests on the extensive surface
area and large pore volume that these substrates can reach.
Depending on the pore size and density of the solid phase, surface
areas can be as high as 2600 m2 g�1 and porosities as large as 99%.

Obviously, in the case of catalytic or sorption applications, the val-
ues of these two parameters are strategic for reaching good perfor-
mances in these processes. An ancient classification [2] of porous
media involves two specimen classes: corpuscular and spongy.
The corpuscular term applies when individual nanoparticles can
be discerned; conversely, the spongy term refers to those systems
in which it is not obvious to isolate individual nanoparticles from
the solid matrix. As examples, xerogels usually correspond to cor-
puscular bodies while zeolites can be classified as spongy materi-
als. A characteristic, which is definitely the basic feature that a
real porous network displays (see Fig. 1(a)), is the fact that cavities
or chambers (named as sites) are surrounded by a number of
throats, windows or necks (named as bonds) through which the
former voids connect to each other. An intuitive property of such
a porous network is that cavities always possess larger sizes than
their surrounding throats. This idea constitutes the basic Construc-
tion Principle (CP) that was employed to develop the Dual Site-Bond
Model (DSBM) of porous structures [3].

In order to advance theoretically in the visualization of porous
networks, sites can be simply assumed as spherical voids which
are connected to homologous elements by a number of cylindrical
throats (see Fig. 1(b)). In this way, the probability, SðRSÞ, to choose a
site of size RS or smaller from a certain distribution FSðRSÞ of site
sizes expressed on a number-of-elements basis is given by:
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SðRSÞ ¼
Z RS

0
FSðRSÞdRS ð1Þ

In the same way, the probability, BðRBÞ of finding a bond of size RB or
smaller among a given distribution FBðRBÞ of bond sizes is given by:

BðRBÞ ¼
Z RB

0
FBðRBÞdRB ð2Þ

Both distributions FSðRSÞ and FBðRBÞ are given on a number-of-ele-
ments basis and are normalized according to:Z 1

0
FSðRSÞdRS ¼ 1 ð3Þ

Z 1

0
FBðRBÞdRB ¼ 1 ð4Þ

An important quantity that determines the topology of a simulated
porous medium is the overlap ðXÞ between the bond- and the site-
size distributions (Fig. 2).

The simulation of porous media requires to consider two laws
that are intrinsically comprised within the CP. The first law states
that the size of any given site ðRSÞmust be always larger than (or at
least equal to) the size ðRBÞ of anyone of the C bonds that are delim-
iting it. In mathematical terms the first law can be written as fol-
lows [3]:

First Law BðRÞP SðRÞ 8R ð5Þ

This last equation implies that the probability of finding a bond of
size R or smaller is always greater or at least equal to the probability
of finding a site of size R or smaller. This guaranties the existence of
a sufficient quantity of bonds of the proper sizes to be connected to
sites of size R.

Now, the interconnection between voids in order to conform a
porous network can be summarized by means of the following
equations:

� The joint probability, density qðRS \ RBÞ, of having a site of size
RS connected to a bond of size RB is:

qðRS \ RBÞ ¼ FSðRSÞFBðRBÞuðRS;RBÞ ð6Þ

Where uðRS;RBÞ represents the correlation function between the
site and bond sizes.
� This site-bond connection has, however, to comply with the CP

according to:

Second Law uðRS;RBÞ ¼ 0 8RS < RB ð7Þ

This is the mathematical expression of the second law and estab-
lishes that the correlation function uðRS;RBÞ is equal to 0 when
the size of a bond is larger than the size of the site to which it is
connected.
� The correlation function uðRS;RBÞ of a site RS, connected to a

bond of size RB, if only RS P RB is given by:

uðRS;RBÞ ¼
exp �

R SðRSÞ
SðRBÞ

dS
B�S

� �
BðRSÞ � SðRSÞ

¼
exp �

R BðRSÞ
BðRBÞ

dB
B�S

� �
BðRBÞ � SðRBÞ

ð8Þ

The two simple laws mentioned above allow the construction of
porous networks according to the DSBM. Fig. 3 shows a graphical
example of a 2-D porous network of varying connectivity where
the CP is fulfilled.

2. A Biased Simulation Early Design (BiaSED) method for the
construction of pore networks via the DSBM

A complete account of the method that was previously em-
ployed to simulate pore networks through the DSBM can be found
in reference [4]; a brief description of this method is as follows.
Heterogeneous (in size) 3-D cubic porous networks were built by
a Monte Carlo method on the basis of the DSBM [5]. The desired
topological properties of the simulated substrates were introduced
by considering a variety of sizes of sites and bonds. The connectiv-
ity (i.e. the number of bonds that surround and connect the sites
with their homologous entities) was kept constant. No geometrical
restrictions, in the sense that the bonds that meet into a site were
not physically interfering with each other, were regarded in this
work. Under the above premises, we presented a Monte Carlo
(MC) method [5] for the construction of porous networks endowed
with size correlations between pore entities. First, a cubic three
dimensional network of size L ¼ N � N � N sites interconnected

Fig. 1. Cavities (sites) and throats (bonds) of porous networks.
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Fig. 2. Overlapping ðXÞ between the bond FBðRBÞ and the site FSðRSÞ size distribu-
tions. The s1 and s2 labels represent the smallest and the largest sites, respectively;
similarly, the b1 and b2 labels symbolize the smallest and the largest bond entities,
respectively.
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