
Yield risks in global maize markets: Historical evidence and projections in
key regions of the world☆

Nelson B. Villoria, Assistant Professor *, Bowen Chen, PhD student

Department of Agricultural Economics, Kansas State University, United States

A R T I C L E I N F O

Keywords:
Extremely low yields
Maize markets
Food prices
Agricultural yields
Systemic risk in agriculture
Global agriculture
AgMIP
Global gridded crop model intercomparison

A B S T R A C T

Simultaneous worldwide crop failures stemming from a more unstable climate may reduce the scope for inter-
national trade to compensate food shortages and stabilize food prices across the various regions of the world.
Understanding the effects of changes in crop productivity on global markets requires knowledge about the extent
to which crop yields may be systematically related across producing and consuming centers. This short
communication contributes to this knowledge by investigating the potential changes in the strength of two key
sources of supply risks in global maize markets: yield variance and cross-country yield correlation. We focus on
the largest producing and consuming countries of the world. We capitalize on yield projections from the Global
Gridded Crop Model Intercomparison project. Exploratory analysis of the skill of the underlying GGCMI models in
reproducing key moments of the distribution of observed yields reveals that they overstate observed variances but
faithfully reproduce observed patterns of cross-country correlations. We find no evidence of an increase in the
degree of cross-country dependency of maize yields. We also find a higher incidence of what would be considered
extremely low maize yields by present-time standards stemming from the projected downward trend in yields
levels toward mid-century. The weak dependency of maize yields across countries, an the possibility of reducing
the higher incidence of extremes through policies aimed to reverse the climate-induced downward trends in
yields, suggest that international trade can become a valuable tool to ameliorate the effects of more unstable crop
yields.

1. Introduction

The potential effects of food supply disruptions occurring simulta-
neously in many parts of the world has been the subject of recent interest
(Benton and Bailey, 2015; Lunt et al., 2016). The main concern is that in
the event of worldwide supply shortages, international trade would not
be able to alleviate imbalances between the demand and supply of
agricultural products, leading to price spikes and limited food availability
(Lunt et al., 2016). Simultaneous supply shocks may be the consequence
of climate teleconnections, such as El Ni~no/Southern Oscillation, which
could result in concurrent agricultural yield reductions across regions of
the world (Rosenzweig and Hillel, 2008). More generally, global climate
models project increases in the frequency of extreme events occurring
simultaneously in the main food growing regions of the world (Diffen-
baugh and Scherer, 2011; IPCC-AR5, 2014).

The possibility of simultaneous reductions in agricultural yields is
important because the extent to which international markets are a

reliable source for stabilizing agricultural commodity prices depends on
the degree to which climate shocks are uncorrelated across countries
(Williams and Wright, 1991). Intuitively, trade stabilizes markets via the
movement of products from where they are abundant to where they are
relatively scarce (Burgess and Donaldson, 2010). Thus, regions with
positive correlation of supply shocks would simultaneously experience
abundance or scarcity, thus reducing the scope for international trade to
stabilize agricultural prices.

In this article, we investigate the variability and correlation of
growing season climate and agricultural yields across the largest maize
producing and consuming countries of the world. We focus on maize
because it is a major staple, a source of feed, and a crop that is widely
produced and traded. We also focus on a reduced number of countries
that are central to the global trading network of maize. Variability and
correlation are two main determinants of the extent to which economic
shocks in a member of a network can translate into systemic risks (Ace-
moglu et al., 2012). For example, a large negative supply shock in the
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U.S., which is the largest node in the trading network of maize, has the
potential to destabilize global markets and reduce food availability in
remote regions connected to the U.S. through international trade
(d’Amour et al., 2016). Correlations in yield shocks are important
because even if supply shocks in individual countries are moderate, the
occurrence of food shortages in many locations at the same time would
decrease the scope of international trade to help to mitigate price spikes
through the redistribution of output. Methodologically, our approach
consists of cross-country comparisons of correlations and variances in the
historical records of maize yields and temperatures as well as in a subset
of the ensembles of climate and crop model projections from the Global
Gridded Crop Model Inter-comparison (AgMIP-GGCMI) initiative of the
Agricultural Model Intercomparison and Improvement Project (Elliott
et al., 2014b; Rosenzweig et al., 2014).

2. Data

Brooks et al. (2013) identify three main hubs in the trading network
of maize: the U.S., which accounts for around a third of world production
and exports; South Africa, an important maize supplier for countries in
Southern Africa; and France, which is central to Europe. We also include
Argentina and Brazil, which together account for around a fourth of
world exports and are both large producers located in the Southern
Hemisphere. China is also considered as it accounts for a fifth of global
maize production, and its role as an opportunistic trader in response to
crop shortages or surpluses has the potential to temporarily destabilize
markets (Allen and Lutman, 2009). We also include India, where maize
cultivation has been growing recently and accounts for 2.4% of global
production. Finally, we include Canada, which even though is a minor
player in global maize markets, is geographically close to the U.S. and
thus provides an opportunity to explore the extent to which correlations
are affected by geographic proximity.

National data on maize yields observed during 1961–2004 for the
focus countries come from FAO (2016). Historical temperature and
precipitation come from the Climatic Research Unit (CRU) monthly
time-series, Version 3.23 (Mitchell and Jones, 2005; Harris et al., 2014).
The data on both climate and maize yield projections come from the
Global Gridded Crop Model (AgMIP-GGCMI) inter-comparison project
(Elliott et al., 2014b; Rosenzweig et al., 2014) and were obtained using
AgMIP-GGCMI's downloading facilities at Geoshare (Villoria et al., 2016,

2018). The AgMIP-GGCMI archive contains simulated yields from seven
crop models (GEPIC, EPIC, pDDSAT, PEGASUS, LPJmL, LPJ-GUESS, and
GAEZ-IMAGE) to 2099, in some cases dating back to as early as 1961.
Yields from each crop model have been simulated using temperature and
precipitation from five climate models (HadGEM2-ES, IPSL-CM5A-LR,
MIROC-ESM-CHEM, GFDL-ESM2M, and NorESM1-M)1 and adjusted
(bias-corrected) by Hempel et al. (2013) so their historical runs preserve
observed monthly means and daily variability around those monthly
means. In addition, each climate-crop model combination is available for
four different Representative Concentration Pathways (RCP) scenarios
(Moss et al., 2010).

Each climate-RCP-crop model combination in the AgMIP-GGCMI
archive is available for scenarios with and without CO2 fertilization as
well as with and without water constraints. Data availability restricted
our model selection to all the climate runs of two crop models: LPJmL
(Bondeau et al., 2007) and pDSSAT (Elliott et al., 2014a).2 We use yield
projections under RCP 2.6 (most benign scenario) and 8.5 (most extreme
scenario). We further restrict our study to the AgMIP-GGCMI scenarios
that reflect water constraints (no irrigation) and consider projected yields
with and without CO2 fertilization. This implies that for each country,
RCP and CO2 fertilization scenario, we have two model ensembles of ten
(two crop models times five climate models) sets of projected yields for
2006–2049. In the analysis below we use the simulated yields from these
two models for 1961–2004 to evaluate their skill in reproducing the
patterns of variances and cross-country correlations in the observed
yields from FAO (2016). For analyzing future changes we focus on pro-
jected yields for the period 2006–2049. It is important to keep in mind
that the projected yields are solely driven by climate drivers and there-
fore do not consider any potential technological improvement during
2006–2049.

Fig. 1. Cross-country correlations of observed FAOSTAT maize yields and of growing season temperature and precipitation (Mitchell and Jones, 2005; Harris
et al., 2014) during 1961–2014. Note: Coefficients in the figure are statistically significant at a 90% significance level if their absolute value exceeds 0.23.

1 Throughout the paper we refer to the climate models as HadGEM, IPSL, MIROC,
GFDL, and NorESM for short.

2 LPJml and pDSSAT historical simulations provided the largest coverage, as they start
in 1961. In contrast, EPIC is available only since 1980 and GEPIC and PEGASUS from
1970. Variances and correlations calculated with such small samples would be very
imprecise. Moreover, the comparisons of skill performance across models discussed below
would be invalidated by using different sample sizes. LPJmL and pDSSAT are also the only
models with continuous information during 2006–2049 for both RCP 2.6 and 8.5 and
with/without considering the effects of CO2 fertilization.
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