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a b s t r a c t

This paper provides sufficient conditions to assess the stability and Input-to-State stability of a class of
second-order systems by only looking at the structure of the dynamic equations. These results are proven
by using the Variable GradientMethod to build suitable Lyapunov functions. The paper includes a number
of relevant examples that highlight the value of the contribution.
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1. Introduction

A large number of physical systems exhibit a second-order dy-
namical behavior. Among others,mechanical systems, electromag-
netic circuits and hydraulic networks fall in such category. For this
class of systems, it is therefore of interest to derive sufficient con-
ditions ensuring stability and asymptotic stability [1]. In [2], it is
shown that the origin of the system ẍ = −h(x)− aẋ is asymptoti-
cally stable if h(x) is an odd function and a > 0. Likewise, in [3], it is
proven that the origin of the systemMẍ+Dẋ+ f (x) = 0 is asymp-
totically stable ifM and D are positive definite matrices and f (x) is
the gradient of a conservative field. In [4], the authors provide some
sufficient conditions for the stability of a system obtained via the
Euler–Lagrange theorem. Results in [5] prove the stability of a sys-
tem in the form ẍ+g(t)ẋ+ f (x) = 0, where f (x) is an odd function
and g(t) is a positive and time-varying damping term. Although
these results are quite general, there are still many practically rel-
evant second order systems that fall outside the above classes and
require an ad-hoc stability analysis. Examples include robots con-
trolled with a saturated PDwith gravity compensation [6], and the
proximate time-optimal control of a double integrator [7]. More-
over,most of these resultswere proven usingweak Lyapunov func-
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tions coupled with LaSalle’s invariance principle, thus preventing
Input-to-State Stability (ISS) analysis.

The objective of this paper is twofold. First, it extends the class
of scalar second-order systems for which sufficient conditions of
asymptotic stability can be provided. Second, it provides stronger
stability results, in particular exponential and input-to-state sta-
bility, by deriving strict Lyapunov functions. These objectives are
achieved by building suitable Lyapunov functions by means of the
Variable Gradient Method (VGM) [8].

In this paper, three theorems are presented. The first theorem
provides sufficient conditions for the asymptotic stability of a sec-
ond order scalar system. These conditions are more general than
the ones provided by the previously mentioned contributions. The
second theorem focuses on a slightly smaller class of systems but
has the advantage of providing a strict Lyapunov function aswell as
sufficient conditions for exponential stability. Finally, the third the-
orem derives sufficient stability conditions in the presence of ex-
ternal disturbances. Interestingly enough, its proof will show how
the Variable Gradient Method can be employed to build not only
Lyapunov functions but also ISS–Lyapunov functions.

The usefulness of the proposed results will be illustrated via
applicative examples.

2. Preliminaries

2.1. Properties of the integral operator

For the readers’ convenience, some useful properties of the
integral operator are recalled:
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(a) Given a function φ : R → R such that φ (y) y > 0,∀y ∈ R\{0}
and a function κ : R → R such that κ (y) > 0,∀y ∈ R\{0},
then x

0
κ (y) φ (y) dy > 0, ∀x ∈ R\{0}. (1)

(b) Given a continuously differentiable vector field g : R2
→ R2, if

∂g1
∂x2

−
∂g2
∂x1

= 0, (2)

then g is conservative [9]. As a result, its integral does not de-
pend on the path taken and is x

0
g (x) dy =

 x1

0
g (y1, 0) dy1 +

 x2

0
g (x1, y2) dy2, (3)

for all x = [x1 x2]T ∈ R2.

2.2. Variable Gradient Method

The VGM was first introduced in [8] and is a systematic tool
for constructing Lyapunov functions. Consider the second-order
nonlinear system

ẋ = f (x) (4)

with f : R2
→ R2 satisfying f (0) = 0. The steps of the Variable

Gradient Method are the following:

1. Define a family of potential Lyapunov functions V : R2
→ R as

V (x) =

 x

0
g (y) dy, (5)

where g : R2
→ R2 is a generic conservative vector field.

2. Determine an expression of g(x)which ensures

V̇ = g (x) · f (x) ≤ 0, ∀x ≠ 0. (6)

3. Having obtained a specific expression of g(x), verify that (5) is
a positive definite function, i.e. V (x) > 0,∀x ∈ R2

\{0}.

2.3. Stability notions

Based on [2,10–12], the following definitions are used.

Definition 1. A continuous function γ : [0, a) → [0,∞) is said to
belong to class K if:

• it is strictly increasing;
• it is such that γ (0) = 0.

Definition 2. A continuous function β : [0, a)×[0,∞) → [0,∞)
is said to belong to class KL if:

• for each fixed s, the function β(r, s) is a class-K function;
• for each fixed r , the function β(r, s) is decreasing with respect

to s and satisfies β(r, s) → 0 for s → ∞.

Definition 3. The origin of a system in the form (4) is

• asymptotically stable if1 there exists a class-KL functionβ and
a set S ⊆ Rn such that

∥x (t)∥ ≤ β (∥x (0)∥ , t) , ∀x (0) ∈ S, ∀t ≥ 0; (7)

• globally asymptotically stable if (7) holds with S = Rn;

1 As stated in [2, p. 150], this definition is equivalent to stating that the
equilibrium point is stable and attractive.

Definition 4. The origin of a system in the form (4) is

• exponentially stable if there exist positive constants c, k, λ
such that

∥x (t)∥ ≤ k ∥x (0)∥ exp (−λt) , ∀ ∥x (0)∥ < c. (8)

• semi-globally exponentially stable if, for any c > 0, there exist
positive constants k, λ satisfying (8).

• globally exponentially stable if there exist positive constants
k, λ that satisfy (8) ∀x ∈ Rn;

Definition 5. A system in the form ẋ = f (x, u)with x ∈ Rn, u ∈ R
and f (0, 0) = 0 is

• Input-to-State Stable (ISS) with restriction X ⊂ Rn on the ini-
tial state x(0) and restriction U ⊂ Rm on the input u(t) if there
exist a class-KL function β and a class-K function γ such that

∥x (t)∥ ≤ β (∥x (0)∥ , t)+ γ


sup
τ≤t

∥u (τ )∥


(9)

for all x (0) ∈ X, u (t) ∈ U.
• ISS with no restrictions (or simply ‘‘ISS’’) if (9) holds with X =

Rn and U = Rm.

3. Main results

This sectionwill provide sufficient conditions for characterizing
the stability properties of a class of second-order systems. The
main interest in these results is that the conditions are very easy
to verify. Suitable Lyapunov functions are constructed within the
proof of each statement.

Theorem 1. The origin of the second-order system
ẋ1 = x2
ẋ2 = −φ1 (x1)− φ2 (x1) x22 − ψ (x1, x2)

(10)

is Globally Asymptotically Stable (GAS) if φi : R → R for i = 1, 2
andψ : R2

→ R are locally Lipschitz continuous functions such that:

φi (0) = 0, i = 1, 2
φ1 (x1) x1 > 0, ∀x1 ∈ R\{0}
φ2 (x1) x1 ≥ 0, ∀x1 ∈ R
ψ (x1, x2) x2 > 0, ∀x1 ∈ R, ∀x2 ∈ R\{0}

and
±∞

0
φ1 (y) dy = ±∞.

Proof. The statement will be proven by using the Variable Gradi-
ent Method to construct a weak Lyapunov function. To this end,
define V (x) as in (5) and consider the vector field

g (x) =

α (x) x1 δ (x) x2


(11)

where α : R2
→ R and δ : R2

→ R are two unknown functions
to be determined. Following from (10), the derivative of V (x) is

V̇ (x) = α (x) x1x2 − δ (x)

φ1 (x1)+ φ2 (x1) x22


x2

− δ (x) ψ (x1, x2) x2. (12)

At this point, the objective is to determine α(x), δ(x) such that

• g(x) is a conservative vector field;
• V̇ (x) is a negative semi-definite function.
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