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a b s t r a c t

In this paper we shall deal with the problem of calculation of the radius of approximate controllability
in the Banach state space Kn

× L2([−hk, 0], Kn) for linear retarded systems of the form ẋ(t) = A0x(t) +

A1x(t − h1) + · · · + Akx(t − hk) + Bu(t). By using multi-valued linear operators we are able to derive
computable formulas for this radius when the system’s coefficient matrices are subjected to structured
perturbations. Some examples are provided to illustrate the obtained results.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The problems ofmeasuring the robustness of controllability and
stabilizability of dynamical control systems have received a good
deal of attention in recent years. Different lines of approach can be
found for example in [1–6]. However the attention hasmainly been
devoted to this problem for finite-dimensional systems and very
little is known so far for systems in infinite-dimensional spaces.

It is well-known that for systems with infinite-dimensional
state spaces the different concepts of exact controllability and
approximate controllability can be considered [7,8]. While exact
controllability is generally preserved under small perturbations
(see, e.g. [9] and references therein) the approximate controlla-
bility, unfortunately, can be destroyed by arbitrarily small per-
turbations of the system parameters. To see this, let us consider
the control system (A, b) described by linear differential equation
ẋ = Ax + bu, x ∈ X, u ∈ C where X = l2, the Banach
space of all square-summable sequences of complex numberswith
the standard basis {ei}, i = 1, 2, . . . , A is the left shift operator:
Ae1 = 0, Aei+1 = ei, i = 1, 2, . . . and b ∈ X is the vector with
coordinates 1, 1/2, . . . , 1/i, . . . or equivalently b =


∞

i=1
1
i ei.

Then A is bounded on X , and by a result in [10, (p. 431)] we have
span{b, Ab, A2b, . . .} = X . Therefore, the system (A, b) is approxi-
mately controllable (see, e.g [8]). Define (A, bn), n = 1, 2, . . .with
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bn =
n

i=1
1
i ei, then, clearly ∥(A, bn) − (A, b)∥ = ∥b − bn∥ → 0

as n → ∞ but all systems (A, bn) are not approximately control-
lable. Another example is the system in X = L2[0, 1] described by
integro-differential equation of Volterra type

∂w(t, ξ)

∂t
=

 ξ

0
w(t, s)ds + v(ξ)u(t), (1.1)

with x(t) = w(t, ·) ∈ L2[0, 1], t ≥ 0 and v(·) ∈ L2[0, 1] such that
v(ξ) ≠ 0 a.e. on [0, δ] ⊂ [0, 1] for some δ > 0. Then as shown
in [8, Example 3.2.1 and Remark 3.2.1] (1.1) is approximately con-
trollable in X but becomes not such by arbitrarily small perturba-
tions of v(ξ).

Despite of the above discouraging examples, for the class of
dynamical systems described by linear retarded equations the
approximate controllability in the Banach space M2(K) := Kn

×

L2([−hk, 0], Kn), K = C (or R), as seen below, is robust against
small perturbations of the system matrices. Therefore, it makes
sense to consider for such systems the problemof calculation of the
radius of approximate controllability whichmeasures the distance
from an approximate controllable system to the nearest system
which is not approximately controllable.

In this paper we will consider the linear retarded system in
Kn, K = C (or R) of the form
ẋ(t) = A0x(t) + A1x(t − h1) + · · · + Akx(t − hk) + Bu(t),
x(0) = x0, x(θ) = φ0(θ), ∀θ ∈ [−hk, 0),

(1.2)

where 0 = h0 < h1 < · · · < hk, Ai ∈ Kn×n, i = 0, 1, . . . , k, B ∈

Kn×m, and φ0(·) ∈ L2([−hk, 0], Kn) is a square integrable function.
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System (1.2) is called approximately controllable in the Banach
spaceM2(K), if for any initial state (x0, φ0(.)) ∈ M2(K) and desired
final state (x1, φ1(·)) ∈ M2(K) and arbitrary ϵ > 0, there exists
T > 0 and a measurable control function u(·), u(t) ∈ Km a.e.
t ∈ [0, T ] such that the corresponding solution of (1.2) x(t) =

x(t, x0, φ0, u) satisfies

∥(x(T ), x(T + ·)) − (x1, φ1(·))∥M2

= ∥x(T ) − x1∥Kn + ∥x(T + ·) − φ1(·)∥L2 < ϵ. (1.3)

System (1.2) is called Euclidean controllable if instead of (1.3), the
solution x(t) = x(t, x0, φ0, u) satisfies

∥x(T ) − x1∥Kn = 0. (1.4)

Controllability of linear retarded systems was a topic of exten-
sive study in control theory in the eighties of the last century, see
e.g. [11–13]. It was shown in particular that (1.2) can be equiva-
lently described by the abstract linear equation in Banach space
M2(K) as ż = Az + Bu, where z(t) = (x(t), x(t + θ)), θ ∈

[−h, 0], A is a generator of C0-semigroup and B is a compact op-
erator and hence exact controllability never occurs for (1.2) (see
e.g. [14]).

The purpose of this paper is to derive formulas for calculating
the robustness measure of approximate controllability in Banach
spaceM2(K) for retarded systems (1.2) when the system matrices
Ai, B are subjected to perturbations. Note that the similar problem
was considered recently in [15,16] but for the notion of Euclidean
controllability. As in [16], we shall apply the approach based
on multi-valued linear operators (see e.g. [17,5,18]) to establish
some formulas for the distance from an approximate controllable
linear retarded system (1.2) to the nearest retarded system which
is not approximately controllable when the system matrices
are subjected to different classes of perturbations, including
particularly separate unstructured perturbations

Ai  Ai + ∆Ai , i = 0, 1, . . . , k,
B  B + ∆B

(1.5)

as well as separate perturbations of affine structure

Ai  Ai + Di∆AiEi, i = 0, 1, . . . , k,
B  B + DB∆BEB,

(1.6)

where ∆Ai , ∆B are unknown disturbances and Di, Ei,DB, EB are
given structuring matrices. In some particular cases, the main re-
sults yield new computable formulas of complex and real struc-
tured controllability radii of linear retarded systems. We also
investigate some relationships between the approximate control-
lability radius and the Euclidean controllability radius.

The organization of the paper is as follows. In the next sec-
tion we shall present the formulas for complex approximate con-
trollability radii and some relationships with complex Euclidean
controllability radius. Section 2 will be devoted to study the real
controllability radii under structured perturbations and derive the
computable formulas in some special cases. In conclusion we sum-
marize the obtained results and give some remarks of further in-
vestigation.

For the readers’ convenience, we give a list of notations to be
used in what follows. Throughout the paper, K = C or R, the
field of complex or real numbers, respectively. Kn×m will stand for
the set of all (n × m)-matrices, Kn(=Kn×1) is the n-dimensional
columns vector space equipped with the vector norm ∥ · ∥ and
its dual space can be identified with (Kn)∗ = (Kn×1)∗, the rows
vector space equipped with the dual norm. For A ∈ Kn×m, A∗

∈

Km×n denotes its adjoint matrix and for Ai ∈ Kn×mi , i = 1,
2, . . . , k, [A1, A2, . . . , Ak] will denote the n× (m1 +m2 + · · ·mk)-
matrix aggregated by columns of Ai. A set-valued map F : Km ⇒
Kn is said to be multi-valued linear operator if its graph grF =

{(x, y) : y ∈ F (x)} is a linear subspace of Km
×Kn. The readers are

referred to [5] for the definitions and theproperties ofmulti-valued
linear operatorswhich are needed to derive themain results of this
paper. In particular, for each multi-valued linear operator F the
adjoint F ∗ and the inverse F −1 are well defined as multi-valued
linear operators and we have the following useful relations:

(F ∗)−1
= (F −1)∗, (GF )∗ = F ∗G∗, ∥F ∥ = ∥F ∗

∥. (1.7)

Here the norm of F is defined as

∥F ∥ = sup


inf
y∈F (x)

∥y∥ : x ∈ domF , ∥x∥ = 1

. (1.8)

If we identify a matrix F ∈ Kn×m with a linear operator F :

Km
→ Kn then its dual operator F∗

: (Kn)∗ → (Km)∗ is defined
by F∗(y∗) = y∗F and its inverse in terms of multi-valued linear
operators is defined as F−1(y) = {x ∈ Km

: Fx = y}. Moreover,
if F is surjective (i.e. F(Km) = Kn) and vector spaces Kn, Km

are equipped with Euclidean norms (i.e. ∥x∥ =
√
x∗x) then the

Moore–Penrose pseudo inverse matrix F Ď = F∗(FF∗)−1
∈ Km×n

exists and defines a linear selector of F−1 (i.e. F Ďy ∈ F−1(y), ∀y ∈

Kn) satisfying ∥F Ďy∥ = inf{∥x∥ : x ∈ F−1(y)} (see [5], Lemma 3.3).
This implies, in particular, that

∥F Ďy∥ ≤ ∥x∥, for all x ∈ F−1(y). (1.9)

2. Complex controllability radius

Consider the linear retarded system (1.2) in Kn, K = C or R.
The characteristic quasi polynomial of system (1.2) is defined as

P(λ) = A0 + e−h1λA1 + · · · + e−hkλAk − λIn. (2.1)

Then it is well-known (see, e.g. [19,12,13]) that system (1.2) is
Euclidean controllable iff

rank[P(λ), B] = n for all λ ∈ C, (2.2)

and is approximately controllable in Banach spaceM2(K) iff

(i) rank[P(λ), B] = n for all λ ∈ C,

(ii) rank[Ak, B] = n.
(2.3)

It follows in particular that if system (1.2) is approximately con-
trollable inM2(K) then it is also Euclidean controllable. Moreover,
(2.2) and (2.3) imply that controllability of system (1.2) persists un-
der small perturbations of matrices Ai, i = 0, . . . , k and B.

Now, assume that the matrices of system (1.2) are subjected to
structured perturbations of the form

[A0, A1 . . . , Ak, B]  [A0,A1, . . . ,Ak,B]
= [A0, A1 . . . , Ak, B] + D1E, (2.4)

so that the perturbed system is described as

ẋ(t) = A0x(t) +A1x(t − h1) + · · · +Akx(t − hk) +Bu(t). (2.5)

Here ∆ ∈ Kl×q is unknown disturbance matrix and D ∈ Kn×l, E ∈

Kq×(n(k+1)+m) are given matrices determining the structure of
perturbations. Note that the class of affine perturbations D1E has
been considered in many papers on control problems in the state
space representation andwasproved to be very useful in the theory
of robust stability and robust controllability (see, e.g. [3,20]). For
the sake of brevity, we shall use the notation

A = [A0, A1, . . . , Ak] ∈ Kn×(n(k+1)).
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