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1. Introduction

One common model that arises in science and engineering is a
class of bilinear models [1], especially in nonlinear system iden-
tification [2,3], signal processing and classification [4], machine
learning/pattern recognition [5], and many other areas of socioeco-
nomics [6] and biology [7]. For example, one class of block-oriented
systems [8] consisting of a dynamic linear (L), a static nonlinear
(N) and a dynamic linear (L) subsystems in series can be conve-
niently formulated as bilinear models. Such an LNL cascade system
is called a Wiener-Hammerstein system [9,10] and its identifica-
tion has been widely studied, see for examples, [10-17].

Due to the wide range applications of bilinear models, there is
a strong motivation to develop identification algorithms for such
models. Among existing schemes, an iterative algorithm originated
in [16] has been extensively used. As pointed out in [17], if the iter-
ative algorithm converges, it converges rapidly and is simple to be
implemented. In [18] and [ 19], the convergence property for itera-
tive algorithm is proved for NL and LN systems when the nonlinear
functions can be well parameterized. However, the convergence
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is generally hard to achieve and unknown in identifying bilinear
models. In fact, it was pointed out in [11] and [ 13] that the conver-
gence problem even for LNL systems with a parametric model [17]
representing the N part (the static nonlinear subsystem) has been
outstanding for long time and is still unsolved. The main difficulty
in obtaining the convergence property is that a block-oriented LNL
system contains internal variables, which are generally unmeasur-
able. It is noted that using nonparametric models [14] to repre-
sent nonlinear static functions, which is more efficient and general
than parametric models especially when the nonlinear functions
are non-smooth or discontinuous, makes the convergence prop-
erty even more difficult to obtain.

In this paper, we propose an algorithm for the identification
of bilinear models iteratively, inspired by fixed point [19,20]. The
fixed point of a function is a point that is mapped to itself by
the function. In many fields, equilibrium is a fundamental con-
cept that can be described in terms of fixed points and the conver-
gence of a sequence can be analyzed. By exploiting the fixed point
theory, it can be proven that the iteration produced by the pro-
posed algorithm is a contraction mapping [21] on a metric space
when the number of data points approaches infinity. This guar-
antees the existence and uniqueness of a fixed point of the iter-
ated function sequence. Therefore the convergence of the iteration
is successfully established. As an application, we first show that
LNL Wiener-Hammerstein models using a nonparametric model
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named “kernel machine” or “kernel method” [22,23] to represent
the N part of the bilinear model, and then apply our proposed algo-
rithm to identify them. This enables the long-standing convergence
problem of iteratively identifying LNL Wiener-Hammerstein mod-
els to be solved in this paper.

The remaining part of the paper is organized as follows. In
Section 2, we introduce bilinear models and fixed point theory as
well as the iterative identification method in identifying bilinear
models. The representation of LNL Wiener-Hammerstein systems
as bilinear models and some relevant analysis are shown in
Section 3. Several simulation examples are given in Section 4
to show the performance of the proposed algorithm. Finally, the
paper is concluded in Section 5.

2. Bilinear models and fixed point theory

In this section, we first present a common model of bilinear
systems. Then an iterative algorithm is proposed to achieve the
identification objective with available input-output data points.

We show that the estimate b of an unknown parameter vector b can
be represented as b = ¥ (b), where function ¥ (.) is obtained from

the iterative algorithm. It is established thath = ¥ (B) has a unique
fixed point which corresponds to the true parameter vector b when
the number of data points tends to infinity. We will also prove

that the sequence {B(O), B(l), 5(2), e 5(1() ...} generated by
the iterated function sequence {b(0), F (b(0)), F (F (b(0))), ...}
converges to the fixed point as k — oo.

2.1. Bilinear models

Usually a linear system described in the following form is
considered for its simplicity,

yi=¢'d+uv;,
where ¢' = [¢}...¢!] € R™ is a known system vector, d =
[d;...d,] € R™*!is an unknown parameter vector, and y; denotes
an observation of the system output with unknown noise v;. An-

other common yet more general model in science and engineering
is the following bilinear model [5]:

yi = ¢ld + b/tlfia + Vi
vl

i=1,...,N (1)

=[¢'...¢l1d+ b a+ v, (2)

i i
v Wy

where b = [b;...byl' € R™*',anda = [ay...a,] € R™*! are
two vectors of unknown parameters with superscript ' denoting
the transpose, ¢! € R"" and ¢! € RM*! fori = 1,...,N are
sequences of matrices which describes a bilinear map from the
parameter space to the observation space. The model is ‘bilinear’
because when either a or b is fixed, the relationship between y;
and b or a is linear. Here we note that lI/j't forj = 1,...,M and

t =1, ..., Ldenoting a component of matrix ¥, is usually related
to the available input-output data points.

Denote the observation vectoras Y = [y; ... yy] and the noise
vector as v = [vy...vn]. We express the bilinear model in a
matrix form of (2) givenby Y = F(a, b, d)+v where F(., .) denotes
the nonlinearity of the bilinear model, and it can be divided into the
following two sub-linear models:

Y = gd+Ab+v

= 6d+A[l, ® alb + v, ifaisknown (3)
Y = gd+Ala+v

= gd+Alb®Iyla+ v, ifb and d are known (4)

where
¢ . @
g=1: ...
¢v - O
vy
A= .. | J=1....M (5)
who
A=[A... A ... Ayl € RVM

A2 AL ®al =[Aa...Aja...Ayd]
AP 2 A[b ® Iy] = b1Ay + - - + bjA; + - - - + byAy

where ® is the Kronecker product operator [24]. Note that A; €
RV*M and A® € RN*! are linearly dependent on a and b, respec-
tively. Here Iy, and I; are conformable identity matrices whose di-
mensions are the same as the dimension of vectors b and q, i.e., M
and L, respectively, for multiplication operation.

Our identification objective is to propose an algorithm to
iteratively estimate a, b and d in the general bilinear model of
(3) and (4), based on sufficiently large number of input-output
data pairs. It will be seen that an LNL nonlinear system can be
formulated to the form of above bilinear model in Section 3.

Assumption 1. Components of v are independent identical dis-
tributed (i.i.d) variables with zero mean and finite variance
D(v;) = ovz.

Assumption 2. Matrix [§ A] = [4 A; ... Ap] is full column rank.

Assumption 3. Either ||b||, or ||a]|; is known and the first nonzero
entry of b or a is positive.

Remark 1. Assumption 1 requires the noises to be white. Assump-
tion 2 implies that p;] < 1[g Al[g Al < p,I where p; and p,
are positive numbers. Clearly, this has the same implication as that
of the input/output signals being persistently exciting (PE) [25].
Note that if matrices ¢ and A are constructed based on random
input and output signals, Assumption 2 is satisfied provided that
the row number of [§ A] is not less than its column number. More
discussions will be given in Remark 5 when applying the proposed
algorithm to LNL systems. Assumption 3 is to guarantee a unique
representation of the LNL nonlinear system, as any pair of xa and
b/k for some non-zero «x will give the same input-output data.

2.2. Iterative identification algorithm
Denote the estimates of a, b and d as @, bhand a, respectively. We

first obtain d without knowing a and b. Then we get a(k) and B(k)
iteratively. Note that (4) can be rewritten as

Y=g,d+b]A1(1++bmAMa+U=9,d+A)/+U (6)
b]ﬂ

where y = : . Then, estimate d is obtained as follows:
bMa

d=(§'(y — AWA)'A)G)(G Iy — A@A'A))Y (7)

where Iy is an identity matrix of dimension N. Later we will show
how to derive (7) and establish the consistency of din Theorem 2.4.
After d is obtained, let B(k) be the estimate of b at the kth iteration
step. When dand B(k) become available, determining the estimate
a(k) of a is to solve a linear equation by substituting them into (3).
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