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a b s t r a c t

This paper deals with the inversion problem of affine square multi-input multi-output (MIMO) nonlinear
systems. It presents a new algorithm unifying the construction of the inverse of a dynamical system with
a regular or a singular characteristic matrix. This algorithm is based on the determination of a projector
on the fibre bundle of the state space and incorporates a regularization of the singular case. It has the
advantage of avoiding the input derivatives. Numerical examples are given to illustrate the proposed
approach.
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1. Introduction

The problem of inversion dynamics and invertibility of dynam-
ical systems has been a subject of a great deal of research since the
works of [1,2] for linear dynamical systems. Then it has been ex-
tended to nonlinear dynamical systems in [3–10]. In fact, inversion
dynamics problem is of utmost importance to resolve issues associ-
atedwith the control field. It arises in the problem of tracking a ref-
erence trajectory, in the robot inverse kinematics and it occurs in
the inversion of the observability map of nonlinear dynamical sys-
tems. Broadly speaking, the inverse dynamics involves a decompo-
sition of an input–output dynamical system into an external part,
that enables an explicit relationship between inputs and outputs,
and an internal part governed by dynamics that involve only inter-
nal state that does not bring into play inputs. These last dynamics
provide the so-called zero dynamics when the external variables
are kept to zero. For single input single output (SISO) linear dy-
namical systems the inverse dynamics has been fully characterized
by their transfer functions [2]. The same problem also was solved
in [4] for SISO nonlinear case, where a full-order realization was
given.

However, in the case of MIMO nonlinear dynamical systems,
the inversion dynamics problem is rather difficult to solve. Several
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researchers have dealt with this problem. In [11] the concept of
zero dynamics was connected to the inverse dynamics. Then, [12]
provided a nice interpretation of input–output linearization via a
feedback removing the zero dynamics.

Despite intensive research on this subject, there only are few
of them that provide computational algorithms of the inverse dy-
namics: [3] gave an algorithm to compute the inverse and the zero
dynamics (see also [13]).

Another alternative method to address this problem is to de-
termine the class of nonlinear dynamical systems which are in-
put–output linearizable. Necessary and sufficient geometric con-
ditions have been stated in [14] and [15].

Therefore, the main priority objective of this paper is to sup-
ply a new algorithm to compute the inverse dynamics for affine
MIMO nonlinear control systems with regular characteristic ma-
trix as well for singular one. In this last case, it provides another al-
gorithm to increase the rank of the singular characteristic matrix.
Indeed, when a given characteristic matrix has no full rank, then
the algorithm provides new outputs to increase its rank. Moreover,
the proposed algorithm has the advantage of not requiring the in-
put derivatives. Therefore the smoothness of inputs is not needed.

This paper is organized as follows: Section 2 summarizes neces-
sary and sufficient geometrical conditions for solvability of the in-
verse dynamics problem for nonlinear MIMO systemswith regular
characteristic matrix. Moreover, it recalls the involutivity concept
from the differential forms approach. Section 3 presents singular
characteristic matrix case, first it provides an algorithm to increase
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the rank of the singular characteristic matrix and then, states suffi-
cient conditions to solve the inverse dynamics problem. Section 4
provides a geometrical algorithm using a projector to compute the
inverse dynamics.

2. Notations and inverse dynamics for regular characteristic
matrix

This section provides a basic summary on necessary and suf-
ficient conditions for the existence of the inverse dynamics for a
nonlinear system with a regular characteristic matrix. To achieve
this goal, we consider the following MIMO dynamical system

ẋ = f (x) +

m
i=1

gi(x)ui (1)

y = h(x) (2)

where x ∈ U ⊆ Rn represents the state, y = (y1, . . . , ym)T ∈ Rn

represents the output and u = (u1, . . . , um)T ∈ Rm is the vector of
the inputs, perturbations or faults.

Let us introduce an informal definition for the invertibility of a
dynamical system.

Definition 1. Dynamical system (1)–(2) is said to be invertible if
we can reconstruct its inputs from its outputs, their derivatives and
the internal state of the system.

The realization of inverse dynamics of dynamical system (1)–(2)
is given by an auxiliary dynamical system described by (see [16]).

η̇ = ϕ

η, y, ẏ, . . . , y(p) (3)

u = ω

η, y, ẏ, . . . , y(q) (4)

where p and q are vectors of integers depending on thewell-known
relative degrees and will be given hereafter. The variable state η is
the so-called internal state. It represents the part of state which
is not linked to inputs. Its determination is particularly crucial to
describe the inverse dynamics. To the best of our knowledge, in
the available literature there is no constructive computational al-
gorithm to determine η.

Before stating the existence conditions of the inverse dynamics
for (1)–(2), we revisit some basic elements from differential
geometry required within this framework.

Background on some geometrical material

• A vector field can be considered as a derivation operator f =n
i=1 fi(x)

∂
∂xi

where fi for i =: n is function of state x.
• The Lie derivative of a function h(x) in the direction of f is itself

a function given by Lf h =
n

i=1 fi(x)
∂h
∂xi

(x).

• If g =
n

i=1 gi(x)
∂

∂xi
is another vector field then, the Lie

bracket of f and g is itself a vector field given by [f , g] =n
i=1


Lf gi(x) − Lg fi


∂

∂xi
.

• A differential 1-form ω on an open set U ⊆ Rn endowed with
coordinates x = (x1, . . . , xn) is given by ω =

n
i=1 κi(x)dxi.

Its evaluation on a vector field f is a function given by ω(f ) =n
i=1 fi(x)κi(x).

Within this paper we will assume the following.

Assumption 1. 1. The distribution ∆ = Span{g1, . . . , gm} has
dimension m and is involutive i.e. [gi, gj] ∈ ∆ for all 1 ≤ i, j, ≤
n. We will say that ∆ is closed under Lie bracket.

2. There exist integers r1, . . . , rm, such that for 1 ≤ i ≤ m,
∃ki ∈ {1, . . . ,m} such that

dLj−1
f hi(gs) = 0, for all s ≠ ki, 1 ≤ j < ri

dLri−1
f hi(gki) ≠ 0

where for i ∈ {1, . . . ,m} the function Lri−1
f hi is the (ri −1)th Lie

derivative of hi in the direction of the vector field f . Its differen-
tial is a 1-form and it can be evaluated on a vector field here gki .
The numbers r1, . . . , rm are the so-called relative degrees [13]
and r = r1 + · · · + rm ≤ n is the total relative degree.

3. The characteristic matrix of the dynamical system (1)–(2)

Γ (x) =


Lg1L

(r1−1)
f h1 . . . LgmL

(r1−1)
f h1

. . . . . . . . .

. . . . . . . . .

Lg1L
(rm−1)
f hm . . . LgmL

(rm−1)
f hm


is regular i.e. it has a full rankm.

Now, consider the following partial change of coordinates

ξi =

ξi,1, ξi,2, . . . , ξi,ri

T
=


hi, Lf hi, . . . , L

(ri−1)
f hi

T
. (5)

Then we can state the following theorem (see [13]).

Theorem 1. Under condition 2 of Assumption 1 there locally exist
(n − r) variables η = (η1, . . . , ηn−r) independent of ξ such that
in coordinates (ξ , η) the system (1)–(2) can be rewritten as follows:

ξ̇i,j = ξi,j+1 for 1 ≤ i ≤ m and 1 ≤ j ≤ ri − 1 (6)

ξ̇i,ri = bi(ξ , η) +

m
j=1

ai,j(ξ , η)uj for 1 ≤ i ≤ m (7)

η̇ = f (ξ , η) (8)
yi = ξi,1 (9)

where bi(ξ , η) = Lrif hi for i = 1 : m and ai,j = LgjL
ri−1
f hi for

j = 1 : m are the Γ (x) coefficients.

Therefore, from Eqs. (6)–(8), we can deduce the following
inverse dynamics:

η̇ = f (ξ , η)

u = Γ −1(ξ , η)




ξ̇1,r1
ξ̇2,r2
. . .

ξ̇m,rm

−

b1(ξ , η)
b2(ξ , η)

. . .
bm(ξ , η)


 .

(10)

From definition (5) of ξ and Eqs. (6)–(9) it can be seen that yi = ξi,1
is the first coordinate of each subsystem (6) for i ∈ {1, . . . ,m}.
Therefore, from (6) we have ξi,j+1 = ξ̇i,j = y(j)

i the jth derivative of
the output yi for j ∈ {2, . . . , rj − 1}. Then ξi = (yi, ẏi, . . . , y(ri−1))
for i = 1 : m. Thus, (10) is in the form (3)–(4) with p = (r1 −

1, . . . , rm − 1) and q = (r1, . . . , rm). More specifically, we have
η̇ = f (ξ , η)

u = Γ −1(ξ , η)




y(r1)
1

y(r2)
2
. . .

y(rm)
rm

−

b1(ξ , η)
b2(ξ , η)

. . .
bm(ξ , η)


 .

(11)

Remark 1. Let ∆⊥ be the co-distribution annihilator of ∆. As ∆

is of rank m and involutive, ∆⊥ is of rank (n − m). Therefore, by
Frobenius’s theorem ∆⊥ is locally spanned by
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