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Alternative conditions for establishing dwell-time stability properties of linear switched systems are
considered. Unlike the hybrid conditions derived in Geromel and Colaneri (2006), the considered ones
are affine in the system matrices, allowing then for the consideration of uncertain switched systems
with time-varying uncertainties. The low number of decision variables moreover permits to easily
derive convex stabilization conditions using a specific class of state-feedback control laws. The resulting
conditions are enforced using sum of squares programming which are shown to be less complex
numerically that approaches based on piecewise linear functions or looped-functionals previously
considered in the literature. The sums of squares conditions are also proven to (1) approximate arbitrarily
well the conditions of Geromel and Colaneri (2006); and (2) be invariant with respect to time-scaling,
emphasizing that the complexity of the approach does not depend on the size of the dwell-time. Several
comparative examples illustrate the efficiency of the approach.
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1. Introduction

Switched systems [1-9] are very flexible modeling tools ap-
pearing in several fields such as switching control laws [4,10],
networked control systems [ 11], electrical devices/circuits [12,13],
and congestion modeling and control in networks [14-16]. When
switching between a family of asymptotically stable subsystems
holds in a way that is independent of the state of system, stability
under minimum and average dwell-times have been shown to be
relevant concepts of stability [ 17,1] for which certain criteria have
been proposed. Hybrid conditions, consisting of joint continuous-
time and discrete-time conditions, for characterizing minimum
dwell-time have been recently proposed in [5] where it is shown
that the use of quadratic Lyapunov functions may lead to better
results than previous ones. Even more importantly, homogeneous
Lyapunov functions have been proved to be able to formulate non-
conservative conditions for minimum dwell-time analysis [18,19].
However, extending these important results to uncertain systems,
time-varying systems and control design is quite difficult due to
the presence of exponential terms that are not applicable to time-
varying systems and would create strongly nonconvex terms in the
design conditions.
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Looped-functionals [20-23], on the other hand, are a partic-
ular class of indefinite functionals (i.e. not required to be posi-
tive definite) satisfying a looping-condition—a particular boundary
algebraic condition. They have been shown to yield stability con-
ditions that are less conservative than those obtained using posi-
tive definite Lyapunov functionals; see e.g. [24,21,20]. They have
also been shown to provide an alternative framework for dwell-
time analysis of switched systems which remains compatible with
uncertain switched systems, time-varying subsystems and, poten-
tially, nonlinear switched systems. Tractable conditions for robust
stability analysis under mode-dependent dwell-time, a stability
concept permitting the instability of the subsystems [23], can be
obtained as well using such a framework. However, the structure
of the conditions and the large number of decision variables make
the derivation of computationally attractive synthesis conditions a
hardly possible task.

The approach proposed in this paper is based on clock-
dependent Lyapunov functions, a class of Lyapunov functions ex-
plicitly depending on the time elapsed since the last discrete-time
event (i.e. a clock); see e.g. [9,25-28]. They have been applied to
switched systems [9,26,28], sampled-data systems [9,25,27] and
impulsive systems [9,27]. The advantages of clock-dependent Lya-
punov functions lie in the absence of any exponential term, facil-
itating the derivation of tractable conditions for establishing the
stability of uncertain hybrid systems. The advantages over the use
of looped-functionals are a lower computational complexity and
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the possibility of deriving convex conditions for the control of hy-
brid systems via state-feedback.

The contribution of the paper is manifold. First, alternative
minimum dwell-time stability conditions, rigorously shown to be
equivalent to those obtained in [5], are provided. The advantage of
the proposed conditions lies in their affine dependence in the sys-
tem matrices, permitting then their extension to uncertain systems
with time-varying subsystems, as opposed to the conditions of [5]
that are only applicable to LTI subsystems. The price to pay, how-
ever, is the characterization of stability with minimum dwell-time
using infinite-dimensional convex semidefinite programs, which
may be hard to solve when the considered system is of large dimen-
sion. A piecewise linear approximation of these conditions have
been proposed in [26] and results in a finite-number of linear ma-
trix inequalities. However, as it will be emphasized later, the dis-
cretization order often needs to be large in order to obtain accurate
results. In contrast, the sum of squares approach [29,30] consid-
ered in this paper yields more accurate results while being faster
and computationally less expensive than the piecewise-linear ap-
proach [26] and the approach based on looped-functionals [23]. It
is also proven that, for the class dwell-time conditions we consider,
the sum of squares relaxation is asymptotically exact, meaning that
by choosing a sufficiently large polynomial order, the conditions
based on sum of squares approximate arbitrarily well the condi-
tions of [5]. A result proving the invariance of the sum of squares
conditions is also proved and shows that the polynomial order is
independent of the minimum dwell-time value and only depends
on the matrices of the switched system.

Outline: The structure of the paper is as follows: in Section 2
preliminary definitions and results are given. Section 3 is devoted
to minimum dwell-time stability analysis whereas Section 4
addresses stability under mode-dependent dwell-time. Results on
the stabilization under minimum and mode-dependent dwell-
time are derived in Section 5.

Notations: The sets of symmetric and positive definite matrices
of dimension n are denoted by S" and ST ; respectively. Given two
symmetric real matrices A and B, the inequalities A > (>)B mean
that A — B is positive (semi)definite. For any square matrix M, we
define Sym[M] =M + M.

2. Preliminaries
2.1. System definition

From now on, the following class of linear switched system

x(t) = Ay pyx(t)
x(to) = Xo

are considered where x, X, € R" are the state of the system and
the initial condition, respectively. The switching signal ¢ is defined
as a left-continuous piecewise constant function o : [0, c0) —
{1, ..., N}. At some point, the matrices A; of the subsystems will
be uncertain and/or time-varying, this will be explicitly stated
when this is the case. We also assume that the sequence of
switching instants {ty, t,, ...} is increasing and does not admit any
accumulation point. Consequently, any Zeno motion is excluded.

(1)

2.2. Stability with periodic switching times

We start with a stability result under periodic switching that
allows us to state the main ideas in a simple context. By peri-
odic switching, it is meant here that switching times are periodic,
ie.tygp1 = ty + T, for some T > 0. Note, however, that the se-
quence of subsystems is not necessarily periodic and, thus, peri-
odic systems theory does not apply here. The following result will
be shown to be directly involved in the derivation of the results on
minimum dwell-time stability in the next section.

Theorem 1 (Stability with Periodic Switching Times). The following
statements are equivalent:

(a) The quadratic form V (x(t), o (t)) = x(£)"Pgx(t), P; € S, 1 =
1,..., N, is a discrete-time Lyapunov function for the switched
system (1) with T-periodic switching times in the sense that the

inequality

V(x(tis1), 0 (tip1)) — V() 0 (0)) < —pllx(t) 3 (2)

holds for some u > 0, all x(ty) € R" and all k € N.
(b) There exist matrices P; € S",, i = 1, ..., N such that the LMIs

>0’
MNPt —p <0 (3)
hold foralli,j=1,...,N, i #].

(c) There exist differentiable matrix functions R; : [0,T] — R",
Ri(0) € SY,, i = 1,...,N, and a scalar & > 0 such that the
LMIs
ATR(T) + Ri(D)A; — Ri(t) < 0 (4)
and
Ri(T) — Ri(0) + el <0 (5)

hold forall T € [O,T]andalli,j= 1,...,N, i#j _
(d) There exist differentiable matrix functions S; : [0, T] +— S",

Si(T) € SY,, i = 1,...,N, and a scalar ¢ > 0 such that the
LMIs
ATSi(T) + Si(D)A; + Si(1) <0 (6)
and
5i(0) — S;(T) + &l <0 (7)

hold forallt € [0, T]and alli,j=1,...,N, i #].

Proof. Proof of (a) & (b): Assume o (ty) = jand o(tx + 7) =i,
t € (0, T]. Then, we have

V(X(treg1), 0 (te1)) — V(x(t), o (t))
= X(t)T [eA?T petT — pj] X(t) 8)

and there exists i > 0 such that (2) holds if and only if (3) holds.
The proof is complete.

Proof of (c) = (b): Assume (c) holds. Solving (4) for R;(t) yields [31]

Ri(7) = e TRi(0)eM (9)
and thus
ATR(0)eMT — R(T) < 0. (10)

From (5), we have that R;(T) < R;(0) — eI and therefore, combining
this with (10), we obtain

M TR(0)e"T — R(0) 4+ &I <0 (11)
which implies in turn that (3) holds with P; = R;(0).
Proof of (d) = (b): The proof follows the same lines as the one
above and is omitted. Note that, in this case, (3) holds with P; =
Si(T).
Proof of (b) = (c): The idea of the proof is to show that, when
there exists matrices P; € S, i = 1, ..., N, such that the LMI (3)
holds, then the LMIs (4)-(5) hold with the matrix-valued functions
Ri(t) = R¥(r) with R¥ (1) = e/ Pt

Computing then the derivative of R} () with respect to t and
noting that AlTeAx'TTPieAfT = A'R/(z), we obtain that —R*(7) +
AR (t) + R (t)A; = Oforall r € [0, T]; hence (4) holds. Noting
now that the condition (3) is equivalent to saying that there exists
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