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a b s t r a c t

The problem of realization of a positive response map as a positive initialized system on a finite dimen-
sional Euclidean state space is investigated. The dynamical part of the system is described by a delta differ-
ential equation on an arbitrary time scale. This incorporates continuous- and discrete-time systems. The
main result states necessary and sufficient conditions for existence of positive realization of a particular
class. The criterion is expressed in the language of skew differential global universes.
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1. Introduction

In systems that appear in biology, chemistry or economics the
variables take often only positive or nonnegative values. Examples
of such systems can be found in [1,2], where also a theory of lin-
ear positive systems was developed. One of the problems studied
in these books is the problem of positive realization: passing from
input–output data to a positive linear system. Many authors con-
tributed to different solutions of this problem (see e.g. [3–8]). Re-
alizations of positive nonlinear systems have hardly been studied.
The problem of realization for the class of positive rational systems
is mentioned in [9], but no solution of the problem is provided.

We study here positive realizations of positive response maps.
The approach is close to that of [10,11], where polynomial, ana-
lytic and smooth realizations were considered. Similar methods
have been used in [12–14] for rational and Nash systems. All the
authors rely on algebraic concepts first used by E. Sontag in [15]
for polynomial discrete-time systems, but none of the papers con-
cerns positive systems.

In [11] the realization problemwas studied for the class of non-
linear systems on time scales. The theory of such systems unifies
the theories of continuous- anddiscrete-time systems. Delta differ-
ential equations, which describe the dynamics of the system, unify
differential and difference equations. Actually, they include much
more: dynamic equations of q-calculus, equations that arise during
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nonuniform sampling, systems with mixed time—partly continu-
ous and partly discrete. We follow the setting of [11]: the systems
that realize the response maps are systems on time scales. The
main reason for such a general approach is saving reader’s time.
The result is the same for all time scales. Though the calculations
for specific time scales may be different, the criteria of positive re-
alizability and the construction of a realization are common for all
time scales.

Theory of dynamical systems on time scaleswas laid out in [16].
Special attention was paid to linear delta differential equations.
The interest in control systems on time scales dates back to 2004.
The first results have concerned controllability, observability and
realizations of linear constant-coefficient and varying-coefficient
control systems with outputs (see e.g. [17]). Positive linear sys-
tems on time scales have been studied in [18,19,8]. There are also
manydevelopments in theory of nonlinear control systems on time
scales. In [20,21] a different realization problemwas solved. It con-
sisted in passing from an input–output delta differential equation
of higher order to a state-space delta differential equation with an
output relation. However no positivity has been addressed.

One of the main tools we use in the paper is global universe.
This is a simplified version of the concept of universe introduced
by J. Johnson [22]. A global universe is a generalization of alge-
bra. In algebra we can substitute elements into polynomials of sev-
eral variables; in a global universe we can substitute elements into
polynomial, analytic or smooth functions of several variables, de-
pending on the class of the global universe. Another concept, built
upon the notion of global universe, is skew differential universe.
This is an extension of the concept of differential algebra.
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We construct the observation universe of a response map,
which is shown to be a skew differential universe with respect to
certain skew derivations. We show relations between this obser-
vation universe and the observation universe of the system that
realizes the response map. The main result says that the positive
responsemap has a positive realization (of a particular class) if and
only if the observation universe of the response map is contained
in some skewdifferential universe, with finitelymany nonnegative
generators.

2. Preliminaries

By R we shall denote the set of all real numbers, by Z the set
of integers, and by N the set of natural numbers (without 0). We
shall also need the set of nonnegative real numbers, denoted by
R+ and the set of nonnegative integers Z+, i.e. N ∪ {0}. Similarly,
Rk

+
will mean the set of all column vectors in Rk with nonnegative

components.
Let k ∈ N and let Kk denote one of the following families of

real functions defined onRk: affine, polynomial, rational, Nash (see
e.g. [14]), analytic, smooth (i.e. C∞). Let K be the disjoint union of
all Kk for k ∈ N.

Calculus on time scales is a generalization of the standard dif-
ferential calculus and the calculus of finite differences. It was de-
veloped by Stefan Hilger in his Ph.D. Thesis [23]. We present here
the basic definitions and facts. More information can be found
e.g. in [16].

A time scale T is an arbitrary nonempty closed subset of the set
R of real numbers. In particular T = R, T = hZ for h > 0 and
T = qN

:= {qk, k ∈ N} for q > 1 are time scales. We assume that
T is a topological space with the relative topology induced from R.
If t0, t1 ∈ T, then [t0, t1]T denotes the intersection of the ordinary
closed interval with T. Similar notation is used for open, half-open
or infinite intervals.

For t ∈ T we define: the forward jump operator σ : T → T by
σ(t) := inf{s ∈ T : s > t} if t ≠ supT and σ(supT) = supT
when supT is finite; the backward jump operator ρ : T → T by
ρ(t) := sup{s ∈ T : s < t} if t ≠ infT and ρ(infT) = infT when
infT is finite; the forward graininess function µ : T → [0,∞) by
µ(t) := σ(t)− t; the backward graininess function ν : T → [0,∞)
by ν(t) := t − ρ(t).

If σ(t) > t , then t is called right-scattered, while if ρ(t) < t , it
is called left-scattered. If t < supT and σ(t) = t then t is called
right-dense. If t > infT and ρ(t) = t , then t is left-dense.

The time scale T is homogeneous, if µ and ν are constant func-
tions. When µ ≡ 0 and ν ≡ 0, then T = R or T is a closed interval
(in particular a half-line). When µ and ν are constant and greater
than 0, then µ = ν and T = µZ + a for a ∈ R.

Let us assume that T is forward infinite, i.e. for every t ∈ T there
are infinitely many points in T that are greater than t .

Let f : T → R and t ∈ T. The delta derivative of f at t , denoted
by f ∆(t) or ( ∆

1t f )(t), is the real number with the property that
given any ε there is a neighborhood U = (t − δ, t + δ)T such that

|(f (σ (t))− f (s))− f ∆(t)(σ (t)− s)| ≤ ε|σ(t)− s|

for all s ∈ U . If f ∆(t) exists, then we say that f is delta differentiable
at t . Moreover, we say that f is delta differentiable on T provided
f ∆(t) exists for all t ∈ T.

Example 2.1. If T = R, then f ∆(t) = f ′(t). If T = cZ, then
f ∆(t) =

f (t+c)−f (t)
c . If T = qN, then f ∆(t) =

f (qt)−f (t)
(q−1)t .

For a function f : T → R let f σ := f ◦ σ .

Proposition 2.2. If f : T → R is delta differentiable, then f σ =

f + µf ∆.

Here is the chain rule on time scales.

Proposition 2.3. Let n ∈ N, F : Rn
→ R be of class C1 and f1, . . . , fn

be delta differentiable functions on T. Then

F(f1, . . . , fn)∆(t) =

 1

0

n
k=1

∂F
∂xk

(f1(t)+ sµ(t)f ∆1 (t), . . . , fn(t)

+ sµ(t)f ∆n (t))f
∆
k (t)ds.

Corollary 2.4. For delta differentiable functions f and g

(fg)∆ = f σ g∆ + f ∆g = fg∆ + f ∆gσ = fg∆ + f ∆g + µf ∆g∆.

Let now f : T × Rn
→ Rn. Consider the delta differential equa-

tion

x∆(t) = f (t, x(t)). (1)

A solution to (1) is a function x defined on some interval [a, b) ⊆ T
and satisfying (1). If f is continuous and is of class C1 with respect
to x (the second variable), then for every initial condition x(t0) = x0
there exists a unique forward solution defined of some interval
[t0, t1) [16].

3. Positive control systems

Let Ω be an arbitrary set. It will be the set of control values.
Consider a control system with output on a time scale T

Σ : x∆(t) = f (x(t), u(t)), y(t) = h(x(t)) (2)

where t ∈ T, x(t) ∈ Rn, y(t) ∈ Rp and u(t) ∈ Ω .
Control u : [T u

0 , T
u
1 )T → Ω is a piecewise constant function

of time, T u
0 , T

u
1 ∈ T, T u

0 < T u
1 . We shall assume that u is continu-

ous from the right, so u is obtained by concatenation of constant
controls defined on half-open intervals of the form [a, b)T. Such a
control will be called nonempty.

We shall also need the empty control at time t0, denoted by ∅t0 ,
for any t0 ∈ T. No value is assigned to such control. Let PC(Ω) de-
note the set of all piecewise constant controls and all empty con-
trols.

In [11] a more complicated definition of piecewise constant
controls on a time scale was used. We believe that the current one
is simpler and more natural. But to preserve simplicity we have to
assume that the control is defined on a half-open interval. Concate-
nation of such controls is defined in an obvious way and results in
a control of the same type.

For ω ∈ Ω we define fω : Rn
→ Rn by fω(x) := f (x, ω). We

shall assume that the components of fω for every ω ∈ Ω and of
h belong to Kn (i.e. are affine, polynomial, rational, Nash, analytic
or smooth). We shall say then that the system Σ is of class K. For
simplicity we consider only globally defined systems, with fω and
h defined on the entire Rn, but without much change also partially
defined systems as in [11] may be accommodated. The reason to
study several classes of systems at once is the same as the reason
to use time scales—to save the precious time of the reader.

Definition 3.1. A control u : [T u
0 , T

u
1 )T → Ω is admissible for Σ

and an initial state x0 ∈ Rn if there is a unique solution x : [T u
0 , T

u
1 ]T

→ Rn of x∆(t) = f (x(t), u(t)) corresponding to x0 and u. Empty
control ∅t0 is always admissible. The solution x of x∆(t) = f (x(t),
u(t)) corresponding to x0 and ∅t0 is defined only at t0 : x(t0) = x0.
We shall write x(t) = x(t, x0, u) to stress dependence of the solu-
tion on the initial state and the control.

Remark 3.2. One could expect that the corresponding solution x
should be defined on the same interval as u, i.e. [T u

0 , T
u
1 ). But we

shall need to evaluate x at T u
1 . If T

u
1 is left-scattered, then the values
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