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a b s t r a c t

This paper aims to construct a design and analysis framework for iterative learning control of linear
inhomogeneous distributed parameter systems (LIDPSs), which may be hyperbolic, parabolic, or elliptic,
and include many important physical processes such as diffusion, vibration, heat conduction and wave
propagation as special cases. Owing to the system model characteristics, LIDPSs are first reformulated
into a matrix form in the Laplace transform domain. Then, through the determination of a fundamental
matrix, the transfer function of LIDPS is precisely evaluated in a closed form. The derived transfer function
provides the direct input–output relationship of the LIDPS, and thus facilitates the consequent ILC design
and convergence analysis in the frequency domain. The proposed control design scheme is able to deal
with parametric and non-parametric uncertainties andmake full use of the process repetition,while avoid
any simplification or discretization for the 3D dynamics of LIDPS in the time, space, and iteration domains.
In the end, two illustrative processes are addressed to demonstrate the efficacy of the proposed iterative
learning control scheme.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Iterative learning control (ILC) is a mature learning control
strategy by fully utilizing the past control experience to improve
the current tracking performance. It is developed for control tasks
that repeat in a fixed time interval, and requires only the sys-
tem gradient bounds instead of accurate system model. ILC is ini-
tially proposed in 1984 [1], and now has been well established in
terms of both the underlying theory and experimental applications
[2–5]. The main research trends in this field include ILC for non-
repetitive tasks or plants, non-smooth nonlinearities, as well as
infinite-dimensional systems, etc. [6].
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Currently, the vast majority of the work reported on ILC con-
siders finite-dimensional systems but there has been some work
reported on ILC of distributed parameter systems (DPSs) governed
by partial differential equations (PDEs). In [7], an iterative learning
approach is applied for the constrained digital regulation of a class
of linear hyperbolic PDE systems, where the plant model is first
reduced to ordinary differential equation (ODE) systems and then
approximated by the discrete-time equivalence. In [8], ILC scheme
is presented for more general spatio-temporal dynamics using nD
discrete linear system models. Without any discretization of sys-
tem, [9] considers the design of P-type and D-Type ILC laws for a
class of infinite-dimensional linear systems using semigroup the-
ory. It is worthy of noticing that the aforementioned three works
all adopt distributed control structure, namely, the number of con-
trol actuators is more than one and they are uniformly distributed
along the spatial domain. Further, to address the application of ILC
for some specific DPSs, [10] considers ILC of flow rate in a center
pivot irrigator used in dry-land farming, which can be modeled
as a spatial–temporal diffusion process in three spatial dimen-
sions coupled with flow in one dimension. In [11], based on Lya-
punov theory, differential-difference type ILC is augmented with
proportional controller to attenuate the unknown periodic speed
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variation for a stretched string system on a transporter. In [12],
the similar ILC scheme is combined with proportional-derivative
controller to compensate for the unknown periodic motion on the
right end for a class of axially moving material systems. In [11,12],
ILC is mainly designed for the stability maintenance of mechanical
processes. Recently, under the framework of ILC, velocity boundary
control of a quasi-linear PDE process is considered in [13], where
the convergence of output regulation is guaranteed in the steady-
state stage. Investigating all the available results in this field, ILC for
infinite-dimensional processes demonstrates clear differences to
ILC for finite-dimensional processes in design and analysis, e.g., the
infinite-dimensional characteristic of system, the interweave of 3D
dynamics in the time, space, and iteration domains, and the ab-
sence of universal analysis tools in convergence analysis [14].

The study of the paper is motivated by the following facts. First,
up to the present, all the references that address ILC of linear and
nonlinear PDEs are focusing on some specific processes, where
the controller design highly depends on the properties of system
model. For instance, in [14], the boundary control of a class of inho-
mogeneous heat equation is considered, and the ILC convergence
analysis is highly depending on the explicit solution of the non-
linear system in the time domain. However, it is not clear how to
extend the main idea in [14] to other types of DPS processes. Sec-
ond, many industrial and engineering processes can be described
by linear or linearized PDEmodels, although nonlinear PDEswould
have been of interest from a practical viewpoint [15]. Meanwhile,
the involved system parameters or even inhomogeneous source
terms may change with operating conditions. Third, parametric or
non-parametric uncertainties can be dealt with by ILC easily under
repetitive control environment, owing to the model-free nature in
the design process of learning controller [16]. In association with
the above observations, this paper aims at ILC design and analy-
sis for general LIDPSs that may be hyperbolic, parabolic, or elliptic,
and include many important physical processes such as diffusion,
vibration, heat conduction and wave propagation as special cases.
In order to overcome the difficulties that are associated with ILC of
LIDPSs, the system equations are first reformulated into a matrix
form in the Laplace transform domain. Through determination of a
fundamental matrix, the system transfer function is then precisely
evaluated in a closed form. The transfer function of a LIDPS con-
tains all information required to predict the system spectrum, the
system response under any initial and external disturbances, and
the stability of the system response. Meanwhile, the derived trans-
fer function clearly demonstrates the input–output relationship of
system, and thus facilitates the consequent ILC design and conver-
gence analysis in the frequency domain. As a result, one can iter-
atively tune the boundary input condition such that the output at
the concernedposition can track the desired reference pointwisely.
Meanwhile, owing to the fact that ILC is a feedforward control, the
proposed scheme not only makes anticipatory compensation pos-
sible to overcome the time delay in boundary output tracking, but
also eliminates the gainmargin limitation encountered in feedback
control.

Themain contributions of the paper are summarized as follows.

(i) A uniform design and analysis framework is presented for ILC
of LIDPSs in the frequency domain. Nevertheless, [7–14] con-
sider the ILC of LIDPSs or DPSs all in the time domain.

(ii) Instead of simplifying the infinite-dimensional PDEs to finite-
dimensional ODEs and/or replacing them by the discrete-time
equivalences as in [7,8,10], the model approximation prob-
lem is avoided in controller design. Thus the often physically
motivated model is advantageously maintained throughout
the entire control design process. In doing so, non-physically
motivated parameters, like discretization parameters are
avoided [17].

(iii) Different from [7–9] that use a distributed control structure,
we consider LIDPSs with point (boundary) control, namely,
both the input actuator and the output sensor are unique. Such
scenario ismore practical and implementable in certain appli-
cations [18–20].

(iv) Instead of considering the stability or set-point problem as
in [7,11–13], we consider more general output tracking prob-
lem.

The paper is organized as follows. In Section 2, problem formu-
lation is first given. In Section 3, we present the details for calculat-
ing the input–output transfer functions for the considered LIDPSs.
In consequence, based on the derivation in Section 3, we focus on
ILC design and convergence analysis in Section 4. Then, Section 5
addresses the robustness problem of the ILC scheme. At last, an il-
lustrative example is presented in Section 6.

2. Problem formulation

Consider the one-dimensional, nth-order, linear inhomoge-
neous PDE under a repeatable process environment
A

∂2

∂t2
+ B

∂

∂t
+ C


wi(x, t) = f (x, t) + g i(x, t), (1)

where the time t ∈ (0, T ] for any fixed T > 0, the spatial coor-
dinate x ∈ (0, 1), i ∈ Z , {0, 1, 2, . . .} is the trial or iteration
number, and wi(x, t) represents the system state in the ith itera-
tion that may be interpreted as temperature in a heat transfer pro-
cess or pollutant concentration in awastewater treatment process.
Meanwhile, the unknown nonlinear functions f (x, t) and g i(x, t)
denote the iteration-independent and iteration-dependent exter-
nal disturbances, respectively. Moreover, A, B and C are spatial dif-
ferential operators of the form A =

n
k=0 ak

∂k

∂xk
, B =

n
k=0 bk

∂k

∂xk
,

C =
n

k=0 ck
∂k

∂xk
with ak, bk and ck being constants and satisfying

|ak|2 + |bk|2 + |ck|2 ≠ 0 as k = n. For the system (1), the boundary
conditions are set as, for t ∈ [0, T ], i ∈ Z, 1 ≤ j ≤ n,
Mjw

i(0, t) + Njw
i(1, t) = γj(t), j ≠ j0,

Mjw
i(0, t) + Njw

i(1, t) = ui(t), j = j0,
(2)

where 1 ≤ j0 ≤ n is a fixed integer, and Mj,Nj are temporal–
spatial, linear differential operators of proper order. The functions
γj(t), j ≠ j0 are unknown but iteration-invariant, while ui is the
tunable system control input. Meanwhile, the initial conditions of
system (1) for all x ∈ (0, 1) are specified as

w(x, t)|t=0 = v0(x),
∂

∂t
w(x, t)|t=0 = v1(x), (3)

where v0(x) and v1(x) are given continuous functions. To validate
our consequent ILC design and analysis,we assume that the bound-
ary value problem (1)–(3) is well posed, and always has one and
only one solution.

It is worth highlighting that the system (1) may be hyperbolic,
parabolic, or elliptic, and describes many important physical pro-
cesses such as diffusion, heat transfer, vibration,wave propagation,
etc. For instance, in describing vibration of a continuum, (1) is of
hyperbolic type, the operator A∂2/∂t2 is associated with the iner-
tia properties of the continuum, the operator B∂/∂t evolves from
damping, Coriolis acceleration, and mass transport, and the opera-
tor C is relevant to stiffness, centrifugal forces, and circulatory ef-
fects [21].

Consider a point control problem for the system (1), namely, it-
eratively tuning the boundary input condition ui(t) such that the
output yi(t) = wi(x∗, t), t ∈ [0, T ] can track the given reference
trajectory yd(t), t ∈ [0, T ], where 0 ≤ x∗

≤ 1 is the spatial posi-
tion of the measurement output. Clearly, when x∗

= 0 or x∗
= 1,
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