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a b s t r a c t

This paper concerns the problem of distributed controller synthesis for a class of heterogeneous dis-
tributed systems composed of α (2 or more) different kinds of subsystems, interacting with one another
according to a certain given graph topology. We will show that by employing Linear Matrix Inequalities
(LMIs) tools, namely the full-block S-procedure, we can derive a control synthesis method based on L2
gain performance. This synthesis method guarantees stability and performance of a whole set of possible
interconnection graphs, and its computational complexity does not depend on the number of subsystems
involved but only on the number of different kinds of subsystems. The effectiveness of the new method
is verified on a test case.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The system and control community is devoting significant ef-
forts on the development of distributed control methods for large
scale systems, as it can be seen from the large number of works
published in the field in the last 40 years [1–7]. By ‘‘distributed con-
trol’’, opposed to ‘‘centralized control’’, we mean a control action
that is computed locally according to the physical spatial extension
of the system, which is seen as an interconnection of simpler sub-
systems. The goal is replacing the high-order centralized controller
with many simple (low-order) elementary controllers which only
have access to a limited set of measures, for example only to those
of the subsystems to which they are physically attached and their
nearest neighbors.

This paper concerns the control of heterogeneous systems (see
for example [5,8,9] and references therein), made by the inter-
connection of N subsystems (or agents), according to an intercon-
nection structure described by a graph. We make the additional
hypothesis of a certain regularity, namely we restrict to heteroge-
neous systems that are only made of a limited number α of differ-
ent subsystem types, as shown in Fig. 1. For such systems,whichwe
will call ‘‘α-heterogeneous’’, we will consider the interconnection
as an uncertainty (as done for example in [10]), and we will use a
robust control tool (the full-block S-procedure [11]) to deal with it
in the form of LMIs (LinearMatrix Inequalities). The contribution of
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this article is the fact that we show that such LMIs can be reduced
to a set whose size does not depend on the number of subsystems
N , but only on α. This means that we obtain an analysis and syn-
thesis method whose computational complexity is not depending
on the number of subsystems, and which can virtually be applied
even for N → ∞, as long as the number of subsystem types α re-
mains limited. This work ideally extends [12,13], which applied to
homogeneous systems (the case of α = 1), and although we will
focus on discrete-time systems, similar reasonings will work for
continuous-time ones as well.

This article is organized as follows. Section 2 introduces the
notation and the basic definitions, while Section 3 summarizes the
full-block S-procedure. Section 4 contains the main result on the
L2 gain analysis of α-heterogeneous systems, and Section 5 shows
how this result can be extended to distributed controller synthesis
for such systems. Section 6 shows the application of the synthesis
methods to an academic example, and then the conclusions are in
Section 7.

2. Preliminaries

2.1. Notation

Let R be the field of real numbers, Z the group of integer
numbers, and Rn×m the set of real n × m matrices. We denote
the identity matrix of order n by In (or just I if n can be inferred
from the context). The notation A ≻ 0 (A ≺ 0) indicates that all
the eigenvalues of the square matrix A = A⊤ are strictly positive
(negative). Let σ(A) denote the maximum singular value of A. We
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Fig. 1. Aheterogeneous systemmade of the interconnection of subsystems of three
different kinds. The arrows represent dynamic interactions among the subsystems.

will also use the symbol ∗ to denote entries that can be inferred
from the symmetry of a matrix expression, and the symbol ⋆ in
expressions of the type XTQX to replace XT and avoid repetitions,
i.e. ⋆QX = XTQX . In this article we make extensive use of the
Kronecker product [14], which we denote by the symbol ⊗; we
remind one of its main properties, according to which:

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) (1)

if the dimensions of the matrices A, B, C,D are compatible.

2.2. α-heterogeneous systems

Weconsider a class of systemswhichwe call ‘‘α-heterogeneous’’.
Such systems are the result of the interconnection of N =

α
i=1 Ni

subsystems of order l; these subsystems belong to α different
classes, andNi elements are present for each class, according to the
following definition.

Definition 1 (α-Heterogeneous Systems). Let P (k) be an N × N
matrix, which we call the ‘‘pattern matrix’’, and which can be
arbitrarily time-varying.We define θj =

j
i=1 Ni (with θ0 = 0) and

I{a1:a2} as anN×N diagonalmatrixwhich contains 1 in the diagonal
entries of indices from a1 to a2 (included) and 0 elsewhere. Let us
consider an Nlth order linear discrete-time dynamical system of
equations:x(k + 1) = Ax(k) + Bww(k) + Buu(k)
z(k) = Czx(k) + Dzww(k) + Dzuu(k)
y(k) = Cyx(k) + Dyww(k)

(2)

where k ∈ Z, x ∈ RNl is the state, u ∈ RNmu is the control input,
w ∈ RNmw is the disturbance, y ∈ RNry is the measured output
and z ∈ RNrz is the performance output. We call such a system ‘‘α-
heterogeneous’’ (for a given α) iff it has a state space realization
with matrices of the kind:

M =

α
i=1

(I{θi−1+1:θi} ⊗ M(i)
a )  

M

+

α
i=1

(I{θi−1+1:θi}P (k) ⊗ M(i)
b )  

M

(3)

where M represents any of the matrices in (2), and P (k) is the
‘‘pattern matrix’’; the matrices M(i)

a are the diagonal blocks of
M, while the matrices M(i)

b constitute the off-diagonal blocks,
according to the structure of P (k).

The matrices with superscript ‘‘(i)’’ concern the dynamics of
each of the α different kinds of systems. The elements of the state

vector in entries from 1 + (i − 1)l to il, with 1 6 i 6 N can be
considered as the state of the ith subsystem, which belongs to type
β if θβ−1 + 1 6 i 6 θβ . The block diagonal part of the matrices
(M, made of the submatrices with the subscript ‘‘a’’) represents
the internal dynamics of the subsystems, while the part depending
on the pattern matrix P (k) (M, made of the submatrices with the
subscript ‘‘b’’) accounts for the interactions between subsystems. A
sparse pattern matrix indicates that each subsystem interacts only
with a limited set of the others, e.g. its neighbors. There is no loss
of generality in assuming that all the α different types are of the
same order l, or have the same number of input/output channels,
as one can add empty rows and columns to upgrade lower order
systems to the higher one.

Alpha-heterogeneous systems can be written in a different
equivalent form; such observation is reported in the form of a
lemma.

Lemma 2. The system of equations:
x(k + 1) = Ax(k) + Bww(k) + Buu(k) + Bpp(k)
z(k) = Czx(k) + Dzww(k) + Dzuu(k) + Dzpp(k)
y(k) = Cyx(k) + Dyww(k) + Dypp(k)
q(k) = Cqx(k) + Dqww(k) + Dquu(k)

(4)

where all the matrices are block diagonal, and with p, q ∈ RNmp , and

Bp =

α
i=1

I{θi−1+1:θi} ⊗


A(i)
b B(i)

w,b B(i)
u,b


Dzp =

α
i=1

I{θi−1+1:θi} ⊗


C (i)
z,b D(i)

zw,b D(i)
zu,b


Dyp =

α
i=1

I{θi−1+1:θi} ⊗


C (i)
y,b D(i)

yw,b 0


Cq =

α
i=1

I{θi−1+1:θi} ⊗

Il 0 0

⊤

Dqw =

α
i=1

I{θi−1+1:θi} ⊗

0 Imw 0

⊤

Dqu =

α
i=1

I{θi−1+1:θi} ⊗

0 0 Imu

⊤
,

(5)

andA, Bw, Bu, Cz, Dzw, Dzu, Cy, Dyw defined according to (3),
is equivalent to (2) for

p(k) = (P (k) ⊗ Imp)q(k). (6)

Proof. Replace the expression of p(k) in (6) into (4), and then
simplify the resulting expression using the properties of the
Kronecker product. �

Remark 3. As all the matrices in (4) are block diagonal, the
interconnections among the different subsystems are only in the
relation (6) between p(k) and q(k). Notice also that from now on
the symbols A(i), B(i)

w , B(i)
u , B(i)

p , C (i)
z , C (i)

y , C (i)
p , D(i)

zw, D(i)
zu , D(i)

zp ,

D(i)
yw, D(i)

yp will denote the diagonal blocks of the matrices in (4)
corresponding to the ith type of subsystem, which means the
blocks between the (θi−1 + 1)-th and the θi-th (included). So, for
example, A(i)

= A(i)
a , B(i)

p =


A(i)
b B(i)

w,b B
(i)
u,b


, and so on.

The system realization defined in (4)–(6), withmp = l+ ry + ru,
is not necessarily minimal, in the sense that many of the entries
of the signal p(k) might be identical to zero; this means that the
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