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a b s t r a c t

We consider the minimization over probability measures of the expected value of a random variable,
regularized by relative entropy with respect to a given probability distribution. In the general setting
we provide a complete characterization of the situations in which a finite optimal value exists and
the situations in which a minimizing probability distribution exists. Specializing to the case where the
underlying probability distribution is Wiener measure, we characterize finite relative entropy changes of
measure in terms of square integrability of the corresponding change of drift. For the optimal change of
measure for the relative entropy weighted optimization, an expression involving the Malliavin derivative
of the cost random variable is derived. The theory is illustrated by its application to several examples,
including the case where the cost variable is the maximum of a standard Brownian motion over a finite
timehorizon. For this examplewe obtain an exact optimal drift, aswell as an approximation of the optimal
drift through a Monte-Carlo algorithm.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In certain situations in stochastic optimal control theory, the
dynamic programming or Hamilton–Jacobi–Bellman equations
may be transformed, through theHopf-transform, into linear equa-
tions [1], [2, Chapter VI]. In the past years, within the applied con-
trol and machine learning community, there has been a significant
amount of interest in this class of ‘path integral control problems’
(see e.g. [3–5]). This class of problems also occurs in risk sensitive
control theory (see [2]) and the theory of large deviations (see [6]),
and it occurs in modified form (constrained to equivalent martin-
gale measures) in mathematical finance, in particular as the dual
problem for a portfolio optimization problem [7]. It is the goal of
this paper to review and extend themathematical underpinning of
this optimization problem, as well as showcase some new results
within this context.

The problem we consider is a minimization problem over
probability measures that are absolutely continuous with respect
to a given probability measure (referred to as the ‘uncontrolled
measure’). The functional we wish to minimize is the sum of (i)
the expectation of a given random variable with respect to any
probabilitymeasure, and (ii) the relative entropyof that probability
measure with respect to the uncontrolled measure. The density of
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the optimal probability measure with respect to the uncontrolled
distribution is readily available through an explicit expression
in terms of the cost random variable. The challenge is then to
understand this probability measure within the context of the
underlying problem.

In particular, in the special case in which we are interested
in this paper, the uncontrolled distribution is Wiener measure
on the space of continuous sample paths. Absolutely continuous
change of distribution then corresponds, by the Girsanov theorem,
to a change of drift, which we will interpret as control process.
The regularizing relative entropy corresponds to squared control
cost. The questions we wish to answer in this paper are: (i)
under what conditions does there exist an optimal change of drift
corresponding to a given cost functional and probability measure,
and (ii) how can it be computed?

There is a close relation to existing theory within the field of
large deviations theory and stochastic optimal control [6,8]. We
should also mention the work of Föllmer [9,10]. For an excellent
self-contained review of these results, see [11]. The main aim of
this paper is to review the application of thementioned results in a
mathematical control context. We also illustrate the use of Monte-
Carlomethods; for recentwork on the use ofMonte-Carlomethods
in relative entropy weighted control, see [12].

Furthermore, for the reader who is familiar with the available
literature, theoretical contributions of our paper include:

(i) Relaxing the usual boundedness assumptions to a condition
that guarantees finite relative entropy of the optimal change
of measure (condition (FE) of Section 2);
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(ii) Solution of the problem where the cost random variable is the
maximumof a standard Brownianmotionwith controlled drift
over a finite time horizon.

1.1. Outline

In Section 2, we consider the general relative entropy weighted
optimization problem, and completely characterize the different
situations that may arise. The situation with finite relative entropy
is most useful, and problems for which the optimal change of mea-
sure has finite relative entropy are easily characterized in terms
of conditions on the cost functional and the probability measure.
Then in Section 3, the finite relative entropy case is further inves-
tigated within the context of a Wiener process. It is shown that a
change of measure with finite relative entropy corresponds to a
square integrable drift, which in particular is the case for the opti-
mal density. In Section 3.2 we show how the optimal drift may be
computed through the Clark–Ocone formula. To illustrate the use
of this approach, and as an interesting result in its own right, we
compute the optimal drift for the case where the cost functional
is the maximum of a one dimensional Wiener process with con-
trolled drift on a finite time horizon (Section 3.3). We also provide
a Monte-Carlo algorithm for the approximation of such a solution,
which is easily extended to other problems.

1.2. Notation

As is common in probability theory, we will allow random
variables to assume their values within the extended reals [−∞,

∞]. Resulting formal expressions may be interpreted as follows:
log 0 = −∞, log∞ = ∞, exp(−∞) = 0, exp(∞) = ∞

and∞ exp(−∞) = 0. For any a ∈ R, we write (a)+ := a ∨ 0
and (a)− := −a ∨ 0 for the positive and negative parts of a. The
euclidean norm of x ∈ Rd is denoted by |x|. For an adapted pro-
cess θ and a continuous local martingale M , both with values in
Rd, we write

 t
0 ⟨θs, dMs⟩ to indicate

d
i=1

 t
0 θ i

s dM
i
s. If (Ω, F , P)

is a probability space we write EP for expectation with respect to
the probability measure P. Lebesgue measure will be denoted by
Leb.

2. Relative entropy weighted optimization

Let (Ω, F , P) be a probability space. The probability measure P
will be referred to as the uncontrolled (probability) measure. Let C
be a random variable assuming values in [−∞,∞]. The random
variable C indicates a cost we wish to minimize, as explained
below.

Let P denote the set of probability measures on (Ω, F ). We
wish to find a probability measure Q ∈ P that

(i) is absolutely continuous with respect to P (denoted by Q ≪
P),

(ii) reduces the expected cost EQC , but
(iii) has small deviation from P. We take the relative entropy

H(Q; P) =


Ω

log

dQ
dP


dQ = EQ


log


dQ
dP


as a measure of this deviation (see e.g. [8, Section 1.4] for pre-
liminary results on relative entropy). Recall that H(Q; P) ≥ 0
for any Q, P ∈ P , and H(Q; P) = 0 if and only if Q = P.

Note that (i) is a constraint and (ii) and (iii) are conflicting opti-
mization targets.

Let P0 :=

Q ∈ P : EQ

[(C)+] <∞ and H(Q; P) <∞

de-

note the set of admissible probability measures, and note that P0
is convex. Define the cost functional J : P → R by

J(Q) :=


EQC +H(Q; P)

= EQ

C + log


dQ
dP


if Q ∈ P0,

∞ otherwise.

(1)

The definition ofP0 is as non-restrictive as possible, so that forQ ∈
P0 the value J(Q) is well defined within the interval [−∞,∞).

We arrive at the following problem:

Problem 2.1 (Relative Entropy Weighted Optimization). Compute
J⋆ = infQ∈P0 J(Q), and if it exists, a minimizer Q⋆

∈ P0 such that
J(Q⋆) = J⋆.

The solution of this problem is well known for the case inwhich
P(|C | < K) = 1 for some K > 0, see e.g. [8, Proposition 1.4.2] or
[6, Proposition 2.5]. The purpose of this section is to provide a com-
plete characterization of the existence of solutions of Problem 2.1
in terms of conditions on P and C . To achieve this goal, wewill con-
sider the following further conditions on C and P.

finite (relative) entropy : P(C < +∞) > 0 and

EP [exp(−C)|C |] <∞.
(FE)

integrability : 0 < EP [exp(−C)] <∞. (I)

Condition (FE) will earn its name (‘finite relative entropy’) below:
as we will see, it is a necessary and sufficient condition for the ‘op-
timal’ probability distribution to have finite relative entropy with
respect to P. The implication

(FE) H⇒ (I)

holds as a result of the estimates exp(−x)1{x≤−1} ≤ exp(−x)|x|
and exp(−x)1{x>−1} ≤ 1

e .

Example 2.2. The following examples may serve to illustrate the
conditions (FE) and (I).

(i) Ω = [0,∞), with P having density f (ω) = exp(−ω) with
respect to Lebesgue measure; C(ω) = −ω : P(C < +∞) > 0
but (I) does not hold.

(ii) Ω = (−∞,∞), dP
dLeb (ω) =

exp(−|ω|)
k(1+ω2)

, with k a normalization
constant, and C(ω) = −|ω|. Then P is a probability distribu-
tion,

EP
[exp(−C)] =

1
k


∞

−∞

1
1+ x2

dx =
π

k
,

and EP
[|C | exp(−C)] = ∞. So (I) holds but (FE) does not.

We have the following observation.

Lemma 2.3. If P(C < +∞) > 0 then P0 is non-empty.

Proof. Under the assumption, there exists an M > 0 such that
P(C < M) > 0. Let Z = 1{C≤M}/P(C ≤ M). Then EPZ = 1, so
that dQ/dP = Z defines a valid probability measure. Furthermore
EQ(C)+ ≤ M <∞ and EQ [| log(Z)|] <∞. Wemay conclude that
Q ∈ P0. �

If (I) holds, then

dQ⋆

dP
= Z⋆

:=
exp(−C)

EP[exp(−C)]
(2)

defines a probabilitymeasureQ⋆ that is absolutely continuouswith
respect to P.
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