
Systems & Control Letters 62 (2013) 679–685

Contents lists available at SciVerse ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

Nilpotent semigroups for the characterization of flat outputs of
switched linear and LPV discrete-time systems
Jérémy Parriaux, Gilles Millérioux ∗
Université de Lorraine, Research Center for Automatic Control of Nancy (CRAN UMR 7039), 2 rue Jean Lamour, 54519 Vandoeuvre-les-Nancy, France

a r t i c l e i n f o

Article history:
Received 21 June 2012
Received in revised form
7 January 2013
Accepted 17 April 2013
Available online 10 June 2013

Keywords:
Flatness
Switched linear systems
Linear parameter varying
Nilpotent semigroups

a b s t r a c t

This paper addresses the problem of flat output characterization for switched linear systems. The
characterization is also extended to LPV systems. The characterization is based on the notion of nilpotent
semigroups. A complete corresponding recursive algorithm is provided. It stops after a finite number of
steps bounded by the dimension of the system. Illustrative examples, for the respective class of switched
linear and LPV systems, highlight the efficiency of the characterization.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Flatness is a control-theoretical concept introduced in [1] and
the assets of flatness-based approaches are well-established. A
deep insight on flatness along with applications can be found in
the book [2]. For a flat discrete-time system (linear or nonlinear),
the state variable as well as the input of the system can be written
as some function of the output (including forward and backward
shifts in the output). Such a property is especially interesting
both for state reconstruction and control perspectives. Indeed,
it is clear from the definition that flatness provides a generic
way of reconstructing the state vector despite possibly unknown
inputs. Even more is true, flatness is a structural property of a
dynamical system and so ensures the existence of an unknown
input observer without any a priori structure of the observer. For
control purposes, flatness is also relevant insofar as, given a flat
output, the definition of flatness provides in a straightforward
manner a constructive way of designing a feedforward control
to track a prescribed trajectory of the plant output. This being
the case, an important issue related to flatness is the problem
of checking whether a given output of a dynamical system is
flat or not. Indeed, it is precisely the flat output which will be
exclusively used for the design of the controller or the state
reconstructor according to the purpose. A first approach consists
in trying to directly agree with the definition, that is attempting
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to express the input and the state vector as a function exclusively
involving derivatives of the output in the continuous case or shifts
of the output in the discrete-time case. A more relevant approach
has been proposed in [3] for continuous linear systems. For
nonlinear systems, flat output characterization has been addressed
to a much lesser extent. We may refer to the recent work [4]
dealing with flatness of time invariant nonlinear discrete-time
systems from a behavioral perspective. In this paper, we propose
a characterization for switched linear systems. It is based on the
notion of nilpotent semigroups and a complete tractable algorithm
is given for checking the conditions. Furthermore, it is shown that
the theoretical condition and the corresponding algorithm can be
extended to LPV systems with little effort. The layout is as follows.
In Section 2, we recall some basics on flatness with a special
emphasis on switched linear systems. Section 3 is devoted to flat
output characterization and a description of the corresponding
algorithm. An extension to LPV systems is proposed in Section 4.
Finally, Section 5 is devoted to illustrative examples.

2. Preliminaries and definitions

Throughout this paper, we shall examine switched linear
systems in the form
xk+1 = Aσ(k)xk + Bσ(k)uk
yk = Cσ(k)xk + Dσ(k)uk.

(1)

The state vector is xk ∈ Rn, the input is uk ∈ R
m and the output

is yk ∈ Rp. All the matrices, namely Aσ(k) ∈ R
n×n, Bσ(k) ∈ R

n×m,
Cσ(k) ∈ Rp×n and Dσ(k) ∈ Rp×m belong to the respective finite
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sets of cardinality J: A = {A1, . . . , AJ}, B = {B1, . . . , BJ}, C =
{C1, . . . , CJ} and D = {D1, . . . ,DJ}. At a given time k, the mode
is delivered by a switching function σ : k ∈ N −→ σ(k) ∈
{1, . . . , J} = J. A sequence of modes (also called a path) over
an interval of time [k1, k2], that is {σ(k1), . . . , σ (k2)}, is denoted
by {σ }k1:k2 . For a given switching rule σ , the set of correspond-
ing mode sequences over an interval of time [k, k + T ] belongs to
JT+1. LetU be the space of input sequences over the time interval
[0,∞) and Y the corresponding output space. At time k, for each
initial state xk ∈ Rn, when the system (1) is driven by the input
sequence {u}k:k+T = {uk, . . . , uk+T } ∈ U, for a mode sequence
{σ }k:k+T , {x(xk, σ , u)}k:k+T refers to the solution of (1) in the inter-
val of time [k, k + T ] starting from xk and {y(xk, σ , u)}k:k+T ∈ Y
refers to the corresponding output sequence in the same interval
of time [k, k+ T ].
For any integer n, 1n refers to the n-dimensional identitymatrix

and 0n×m stands for the n × m zero matrix. If irrelevant, the
dimension of the zero matrix is omitted and it shall be merely
written as 0. We introduce the subsequent vectors and matrices:

uk:k+i =


uk

uk+1
...

uk+i

 , yk:k+i =


yk

yk+1
...

yk+i

 (2)

Im×r =

1m 0m×(m·r)



Oσ(k:k+i) =


Cσ(k)

Cσ(k+1)Aσ(k)
...

Cσ(k+i)A
σ(k+i−1)
σ (k)

 . (3)

The matrix Oσ(k:k+i) involves the transition matrix defined by

Aσ(k1)
σ (k0)
= Aσ(k1)Aσ(k1−1) · · · Aσ(k0) if k1 ≥ k0
= 1n if k1 < k0.

Finally, we recursively define the matrix

Mσ(k:k+i) =


Dσ(k) 0

Oσ(k:k+i)Bσ(k) Mσ(k+1:k+i)


(4)

with

Mσ(k:k) = Dσ(k).

Let us notice that the notation σ(k : k+i), which points out that
the related matrix depends on the sequence {σ(k), . . . , σ (k + i)}
is somehow abusive since σ is defined over N and not over Ni+1.
However, since it does not induce confusion, such a notation will
be used accordingly for the sake of shortness.
Flatness is closely related to the notions of left invertibility

which actually stands for a necessary condition. Roughly speaking,
invertibility of a dynamical system is the ability of uniquely
determining the input sequence from the output sequence. The
works dealing with left invertibility reported in [5] are considered
throughout the literature as the pioneering ones. Left invertibility
for switched linear systems has been addressed in [6] for
continuous-time systems and in [7,8] for discrete-time systems.
The concept of left inverse systems, related to left invertibility,

will play a central role for our purpose. The following definition is
in accordance with the papers [7–9].

Definition 1. A system, with state vector xk, is a left r-delay
inverse for (1) if, under identical initial conditions x0 and identical
sequences {σ }0:∞, there exists a non negative integer r such that,
when driven by yk:k+r , the equalitiesxk+r = xk anduk+r = uk for
all k ≥ 0 are ensured,uk being the output of (1) at time k. The non
negative integer r is called the inherent delay.

Let us notice that the terminology of r-delay inverse and
inherent delay is borrowed from the work [10] which deals with
linear systems. Besides, the consideration of the initial condition x0
stands as a counterpart of the continuous case and the definition
of invertibility at point x0 introduced in [11]. Actually, the initial
condition x0 has been disregarded in [10] by assuming that it is
zero or that ‘‘its effect can be subtracted’’.
The papers [7–9] give an explicit form of the left r-delay inverse

system for (1). It is recalled below.xk+r+1 = Pσ(k:k+r)xk+r + Bσ(k)Im×r(Mσ(k:k+r))
Ďyk:k+ruk+r = −Im×r(Mσ(k:k+r))

ĎOσ(k:k+r)xk+r
+ Im×r(Mσ(k:k+r))

Ďyk:k+r
(5)

with

Pσ(k:k+r) = Aσ(k) − Bσ(k)Im×r(Mσ(k:k+r))
ĎOσ(k:k+r). (6)

The matrix (Mσ(k:k+r))
Ď is the classical Moore–Penrose generalized

inverse of Mσ(k:k+r). The matrices Pσ(k:k+r) are called left inverse
dynamical matrices.

2.1. Flatness

Definition 2 ([9]). A square (p = m) dynamical system is said to
be flat if there exists a set of independent variables yk, referred to
as flat outputs, such that all system variables can be expressed as
a function of the flat output and a finite number of its backward
and/or forward shifts. In particular, there exist two functionsF and
Gwhich obey
xk = F (yk+kF , . . . , yk+k′F )

uk = G(yk+kG , . . . , yk+k′G)
(7)

where kF , k′F , kG and k′G are Z-valued integers.

The issue of flat output characterization consists in checking
whether or not a given output of a dynamical system is flat. Theo-
rem 1 stated in [9] and recalled below gives a first characterization
by considering the left inverse dynamical system (5).

Theorem 1 ([9]). An output yk of the system (1) assumed to be
square, with left inherent delay r, is a flat output if there exists a
positive integer K < ∞ such that, for all sequences in Jr+K , the
following equality, involving the product of left inverse dynamical
matrices, applies for all k ≥ 0:

Pσ(k+K−1:k+K−1+r)Pσ(k+K−2:k+K−2+r) · · · Pσ(k:k+r) = 0. (8)

Condition (8) only involves matrices (6) of the left r-delay in-
verse system (5). Besides, the matrices (6) depend on sequences of
modes. Hence, even if σ is arbitrary, the sequences parametrizing
two successive matrices involved in the product (8) are related to
each other. To cope with this constraint without introducing too
heavy notations and to make the subsequent technical develop-
ments more explicit, it is convenient to define an auxiliary system
and to rewrite Theorem 1 accordingly.

2.2. Auxiliary system

Let us define the auxiliary system of (1) as the switched linear
system given by

qk+1 = Qσ ′(k)qk (9)

with qk ∈ Rn and σ ′ a switching rule defined as follows.
Consider the mapping φ : Jr+1

→ H = {1, . . . , J r+1}
that assigns to each possible sequence {σ(k), . . . , σ (k + r)} an
integer h from the set H which uniquely identifies the sequence.
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