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a b s t r a c t

For optimal control problems involving ordinary differential equations and functional inequality state
constraints, the maximum principle may degenerate, producing no useful information about minimizers.
This is known as the degeneracy phenomenon. Several non-degenerate forms of the maximum principle,
valid under different constraint qualifications, have been proposed in the literature.

In this paper we propose a new constraint qualification under which a nondegenerate maximum
principle is validated. In contrast with existing results, our constraint qualification is of an integral type.
An advantage of the proposed constraint qualification is that it is verified on a larger class of problems
with nonsmooth data and convex velocity sets.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Since the birth of optimal control theory, commonly assumed
to be in the late 50’s of last century [1], the maximum princi-
ple (MP) has been a powerful and widely used analytic tool. As
it is well known, the maximum principle provides a set of nec-
essary optimality conditions useful to identify, among admissible
solutions, candidates to minimizers. The original statement of the
maximum principle presented by Pontryagin et al. has been gener-
alized, strengthened and extended in many different ways. A ma-
jor driving force behind these and other developments in optimal
control theory has been the increasing number of applications.

Since state constraints are repeatedly encountered in applica-
tions, it is no surprise that the state constrained maximum princi-
ples have been the focus of intense research. Particularly relevant
for our context is the work of Dubovitskii and Milyutin [2], which
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introduced measures in the maximum principle for such prob-
lems, and its extension to nonsmooth problems by Vinter and Pap-
pas [3]. The state constrained maximum principle may exhibit a
troublesome shortcoming. Indeed, and as it is amply illustrated by
an example by Dubovitskii (see description in [4] and references
therein), the maximum principle may degenerate if one end of
the optimal trajectory belongs to the boundary of the state con-
straints. This phenomenon is known in the literature as the degen-
eracy phenomenon of themaximumprinciple for state constrained
problems. It may arise in applications, most notably when Model
Predictive Control frameworks are used (see e.g. [5] for a descrip-
tion of this technique) since the optimal control problems have to
be solved for several initial states along the trajectory.

Clearly the occurrence of the degeneracy phenomenon has as
a consequence that the necessary optimality conditions no longer
give useful information to select minimizers. To remedy such a
situation several authors have come up with conditions designed
to identify classes of problems for which the maximum principle
is nondegenerate (see, for example, [6–13], etc.). Other situations
that may be related to the degeneracy phenomenon as normality
and regularity of the optimal control andmultipliers have also been
amply studied; in this respect see [14–23] among others.

In the literature, the conditions imposed to avoid the degener-
acy phenomenon, called constraint qualifications, are inward point-
ing type conditions of mainly two types (see [13] for a discussion).
One type of these conditions assumes knowledge of the optimal
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control. Although this type of conditions holds under less regular-
ity assumptions, it has the disadvantage of being difficult to verify
since the optimal control is not known a priori.

In this paper we focus on necessary conditions of optimality
for state constrained problems. We propose a new and weaker
type of inward pointing conditions to avoid the occurrence of
the degeneracy phenomenon of the state constrained maximum
principle. Differing from the literature, our constraint qualification
is of integral-type (a preliminary version of these results was
announced in [24,25]).

Our constraint qualification is a condition that implies, but is
not implied by the constraint qualification in [9]. The accompany-
ing nondegenerate maximum principle applies to problems with
possibly nonsmooth data. The price we pay is that convexity of the
so-called ‘‘velocity set’’ is assumed. Therefore, the results proposed
here, can be applied to a larger class of problems with nonsmooth
data and convex velocity sets.

This paper is organized as follows. We start by giving the main
concepts and notation that are used throughout the paper in the
next section. In Section 2 we describe, in the context of our results,
optimal control problems with state constraints, the maximum
principle, the degeneracy phenomenon and the literature on
constraints qualifications designed to avoid the degeneracy
phenomenon. Our integral type constraint qualification as well
as the statement of the associated nondegenerate maximum
principle is introduced and discussed in Section 3 where we state
a smooth version of our main result. Section 4 focuses on the
nonsmooth more general case. The proof of our main result is in
Section 5.

2. Necessary conditions of optimality and the degeneracy
phenomenon

Consider an optimal control problemwith fixed initial state and
with pathwise constraints:

(P)


Minimize g(x(1))
subject to ẋ(t) = f (t, x(t), u(t)) a.e. t ∈ [0, 1]
x(0) = x0
x(1) ∈ C
u(t) ∈ Ω(t) a.e. t ∈ [0, 1]
h (t, x(t)) ≤ 0 for all t ∈ [0, 1].

The data for this problem comprises functions g : Rn
→ R, f : R×

Rn
×Rm

→ Rn, h : R×Rn
→ R, and a multifunction Ω : [0, 1] ⇒

Rm. The set of control functions for (P) is U := {u : [0, 1] →

Rm
: u is a measurable function, u(t) ∈ Ω(t) a.e. t ∈ [0, 1]}.

The state trajectory is an absolutely continuous function which
satisfies the differential equation for some control function u. The
domain of the above optimization problem is the set of admissible
processes, namely pairs (x, u) comprising a control function u and
a corresponding state trajectory x which satisfy the constraints of
(P). We say that an admissible process (x̄, ū) is a local minimizer if
there exists δ > 0 such that g(x̄(1)) ≤ g(x(1)) for all admissible
processes (x, u) satisfying ∥x − x̄∥L∞ ≤ δ.

TheMP for problemswith state constraints, featuringmeasures
as the multipliers associated with the such constraints, were
first introduced by Dubovitskii and Milyutin in [2]. Several
generalizations were developed, see for example [26–28].

Assume that, for some δ′ > 0, the following hypotheses are
satisfied.

H1. The function (t, u) → f (t, x, u) is L × Bm measurable
for each x.

H2. There exists a L × Bm measurable function k(t, u) such
that t → k(t, ū(t)) is integrable and

∥f (t, x, u) − f (t, x′, u)∥ ≤ k(t, u)∥x − x′
∥

for x, x′
∈ x̄(t)+ δ′B, u ∈ Ω(t) a.e. t ∈ [0, 1]. There exist

scalars Kf > 0 and ϵ′ > 0 such that

∥f (t, x, u) − f (t, x′, u)∥ ≤ Kf ∥x − x′
∥,

for x, x′
∈ x̄(0) + δ′B, u ∈ Ω(t) a.e. t ∈ [0, ϵ′

].
H3. The function g is Lipschitz continuous on x̄(1) + δ′B.
H4. The graph of Ω is L × Bm measurable.
H5. The set C is closed.
H6. The function h is upper semicontinuous in t and there

exists a scalar Kh > 0 such that

|h(t, x) − h(t, x′)| ≤ Kh∥x − x′
∥,

for all t ∈ [0, 1].
H7. There exist positive constants ϵ and ϵ1 such that

f (t, x, Ω(t)) is convex for all t ∈ [0, ϵ) and for all x ∈

x0 + ϵ1B.

Here B denotes the closed unit ball and L × Bm denotes the
product σ -algebra generated by Lebesgue sets of [0, 1] and Borel
subsets of Rm.

To simplify the expositionwe start to present in this section and
in Section 3 the smooth case. Thus we add the following additional
interim hypotheses:

AH2. The function x → f (t, x, u) is continuously differentiable
for each (t, u).

AH3. The function g is continuous differentiable on x̄(1)+ δ′B.
AH5. The set C is convex.
AH6. The function x → h(t, x) is differentiable for fixed t and

h and hx are continuous.

These hypotheses will be removed later in the main result, in
Section 4.

The maximum principle (MP) for state constraints typically
asserts existence of an absolutely continuous function p, a
nonnegative regular Borel measure µ ∈ C∗([0, 1], R), and a scalar
λ ≥ 0 satisfying

µ{[0, 1]} + ∥p∥L∞ + λ > 0, (1)

−ṗ(t) =


p(t) +


[0,t)

hx(s, x̄(s))µ(ds)


· fx (t, x̄(t), ū(t))

a.e. t ∈ [0, 1], (2)

−


p(1) +


[0,1]

hx(s, x̄(s))µ(ds)


∈ NC (x̄(1)) + λgx(x̄(1)), (3)

supp {µ} ⊂ {t ∈ [0, 1] : h (t, x̄(t)) = 0} , (4)

and for almost every t ∈ [0, 1], ū(t) maximizes over Ω(t)

u →


p(t) +


[0,t)

hx(s, x̄(s))µ(ds)


· f (t, x̄(t), u) , (5)

where supp {µ} denotes the support of measure µ, C∗ the dual
space to the space of continuous functions and NC (x) denotes the
normal cone to C at x. (For convex sets the normal cone is simply
NC (x) := {y ∈ Rn

: yT (x′
− x) ≤ 0, x′

∈ C}. For nonconvex sets it
will be defined later in Section 4.)

This MP might not supply any useful information to select
minimizers for certain optimal control problems where the
trajectory starts on the boundary of the admissible state region, i.e.,



Download	English	Version:

https://daneshyari.com/en/article/750322

Download	Persian	Version:

https://daneshyari.com/article/750322

Daneshyari.com

https://daneshyari.com/en/article/750322
https://daneshyari.com/article/750322
https://daneshyari.com/

