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a b s t r a c t

The tools of lattice theory are applied to readdress the static state feedback linearization problem for
discrete-time nonlinear control systems. Unlike the earlier results that are based on differential geometry,
the new tools are also applicable for nonsmooth systems. In case of analytic systems, close connections
are established between the new results and those based on differential one-forms. The Mathematica
functions have been developed that implement the algorithms/methods from this paper.
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1. Introduction

The paper recasts the old problem of static state feedback lin-
earization using the algebraic lattice theory. The mathematical
technique used is known under the name ‘algebra of functions’
[1]. The interest in recasting the old problem is manyfold. First, it
helps through comparison to evaluate the (dis)advantages of the
new technique. The explicit relations between respective formu-
las/algorithms/solvability conditions can be given. Second, it al-
lows to compare the assumptions behind the different approaches.
Finally, since the new tools were inspired by the algebra of par-
titions in the theory of finite automata [2] and mimics the lat-
ter, it helps to build a possible bridge between the theories of
continuous-time and discrete event systems. However, this aspect
will be studied in another paper.

In the algebra of functions the partitions (used in the algebra
of partitions) were replaced by functions generating them and the
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analogous operations and operators for functionswere introduced.
The four key elements of the algebra of functions are partial
preorder relation, binary operations (sum and product, defined in
a specific manner), binary relation and certain operatorsm andM,
defined on the set SX of vector functions with the domain being
the state space X of the control system. The starting point of the
approach are the relations of partial preorder and equivalence,
denoted as ∼=. The equivalence relation divides the set SX of vector
functions into the equivalence classes SX\ ∼= which is proved to be
a lattice. Like the tools based on the differential forms, the algebra
of functions provides a unified viewpoint to study the discrete-
time as well as the continuous-time control systems; additionally
it allows to address also the discrete-event systems like those in
[3,4]. An important point to stress is that these tools (unlike most
previous methods) do not require the system to be described in
terms of smooth functions.

Besides extending the results on feedback linearization for non-
smooth systems, the goal of this paper is to compare the tools of
the algebra of functions with those based on the vector spaces of
differential one-forms over suitable difference fields of nonlinear
functions. We will give precise relations between respective
solvability conditions and solutions for analytic systems. In order
to focus on the key aspects and keep the presentation simple, we
restrict ourselves in this paper to the discrete-time single-input
systems.

Whereas the number of publications on the topic of static state
feedback linearization is huge, the situation is different for the
discrete-time case, see [5–11]. Except [11], all papers focus on
smooth feedback.
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2. The algebra of functions

Consider a discrete-time nonlinear control system of the form

σ(x) = f (x, u), (1)

where by σ(x) is denoted the forward shift of x, alternatively
written as x+ and understood as x(k + 1), f : X × U → X , the
variables x and u are the coordinates of the state space X ⊆ Rn and
the input space U ⊆ R, respectively.

In the mathematical technique, called the algebra of functions,
f in (1) is allowed to be non-smooth. The main elements of the
technique, defined on the set SX of vector functions with the
domain being the state space X , are [1]:

1. relation of partial preorder, denoted by ≤, and equivalence,
denoted by ∼=,

2. binary operations, denoted by × and ⊕,
3. (non-symmetric) binary relation, denoted by∆,
4. operatorsm and M.

Definition 1 (Relation of Partial Preorder). Given α, β ∈ SX , one
says that α ≤ β iff there exists a function γ such that β(s) =

γ (α(s)) for ∀x ∈ X .

If α ≰ β and β ≰ α, then α and β are said to be incomparable.

Definition 2 (Equivalence). If α ≤ β and β ≤ α, then α and β are
called equivalent, denoted by α ∼= β .

Besides the relations of partial preorder and equivalence, we
use the generic notions, corresponding to the situation when the
relation may be violated on a set of measure zero.

Note that the relation ∼= is reflexive, symmetric and transitive.
The equivalence relation divides the set SX into the equivalence
classes containing the equivalent functions. If SX\ ∼= is the set of
all these equivalence classes, then the relation ≤ is partial order
on this set. Recall that a lattice is a set with a partial order where
every two elements α and β have a unique supremum (least
upper bound) sup(α, β) and an infimum (greatest lower bound)
inf(α, β). The equivalent definition of the lattice as an algebraic
structure with two binary operations × and ⊕ may be given if
for every two elements both operations are commutative and
associative andmoreover, α× (α⊕β) = α, α⊕ (α×β) = α. The
equivalence follows from the definition of the binary operations×

and ⊕ as

α × β = inf(α, β), α ⊕ β = sup(α, β). (2)

Therefore, the triple (SX\ ∼=,×,⊕) is a lattice. In lattice theory it
is customary not to operate with inf(α, β) and sup(α, β) but with
binary operations × and ⊕, respectively.

In the simple cases the definitionmay be used to computeα⊕β .
For the general case, see [1,12]. The rule for operation × is simple
(α × β)(x) = [αT (x), βT (x)]T . However, the product may contain
redundant (functionally dependent) components that have to be
found and removed. Moreover, to simplify the computations, one
is advised to replace the remaining components by equivalent but
more simple functions, see more in [12].

Definition 3. (Binary relation∆) Givenα, β ∈ SX , α and β are said
to form an (ordered) pair, denoted as (α, β) ∈ ∆, if there exists a
function f∗ such that

β(f (x, u)) = f∗(α(x), u) (3)

for all (x, u) ∈ X × U .

The binary relation∆maybe given the following interpretation.
One may ask what is the necessary information about x(t) to
compute β(x(t + 1)) for arbitrary but known u(t)? The amount
of the necessary information is displayed in function α(x), forming
a pair with the function β(x).

Obviously, given β(x), there exist many functions α(x), forming
a pair with β(x), i.e. (α, β) ∈ ∆. The most important among them
is the maximal function with respect to the relation ≤, denoted
by M(β). In a similar manner, for given α(x), there exist many
functions β(x), forming a pair with α(x), i.e. (α, β) ∈ ∆. We will
denote bym(α) theminimal function among those functions (with
respect to relation ≤). This yields the following definitions.

Definition 4. Operator m, applied to a function α, is a function
m(α) ∈ SX that satisfies the following two conditions
(i) (α,m(α)) ∈ ∆
(ii) if (α, β) ∈ ∆, thenm(α) ≤ β .

Definition 5. Operator M, applied to a function β , is a function
M(β) ∈ SX that satisfies the following conditions
(i) (M(β), β) ∈ ∆
(ii) if (α, β) ∈ ∆, then α ≤ M(β).
Computation of m(α). It has been proven that the function γ exists
that satisfies the condition (α × u)⊕ f ∼= γ (f ); definem(α) ∼= γ ,
see [13]. Because the composition γ (f )may be written as γ+ and
m(α) ∼= γ , one may alternatively write the rule for computation
of the operatorm using a backward shift as follows:

m(α) ∼= ((α × u)⊕ f )−. (4)
Computation of M(β). In the special case when the composite
function β(f (x, u)) can be represented in the form

β(f (x, u)) =

d
i=1

ai(x)bi(u) (5)

where a1(x), a2(x), . . . , ad(x) are arbitrary functions and b1(u),
b2(u), . . . , bd(u) are linearly independent over R, then
M(β) := a1 × a2 × · · · × ad. (6)
For the general case, see [1].

Below we present two propositions that involve the coordinate
transformation ϕ : X → Z . Note that the transformation ϕ itself
as well as its inverse ϕ−1 are defined generically, i.e. everywhere
except perhaps on the set of zero measure. Moreover, note that
neither ϕ nor ϕ−1 are necessarily smooth; see also Example 29
below.

Proposition 6 ([1] (pp. 81–82)). Let α be a vector function on SX
and ϕ : X → Z a coordinate transformation. Then m(α(ϕ)) ∼=

(m(α))(ϕ), M(α(ϕ)) ∼= (M(α))(ϕ).

Proposition 7. Let α and β be two vector functions on SX and ϕ :

X → Z a coordinate transformation. Then (α ⊕ β)(ϕ) ∼= α(ϕ) ⊕

β(ϕ).

Proof. Note that by definition of operation ⊕ inequalities (α ⊕

β)(ϕ) ≥ α(ϕ) and (α ⊕ β)(ϕ) ≥ β(ϕ) imply

(α ⊕ β)(ϕ) ≥ α(ϕ)⊕ β(ϕ) (7)

and, furthermore, taking the composition with the function ϕ−1,

((α ⊕ β)(ϕ))(ϕ−1) = α ⊕ β ≥ (α(ϕ)⊕ β(ϕ))(ϕ−1). (8)

Applying again (7) for the right-hand side of the above inequality,
one gets

(α(ϕ)⊕ β(ϕ))(ϕ−1) ≥ (α(ϕ))(ϕ−1)⊕ (β(ϕ))(ϕ−1) = α ⊕ β. (9)

Finally, (8) and (9) yield (α(ϕ) ⊕ β(ϕ))(ϕ−1) ∼= α ⊕ β, or
(α ⊕ β)(ϕ) ∼= α(ϕ)⊕ β(ϕ). �
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