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a b s t r a c t

A deterministic learning theory was recently proposed which states that an appropriately designed
adaptive neural controller can learn the system internal dynamics while attempting to control a class
of simple nonlinear systems. In this paper, we investigate deterministic learning from adaptive neural
control (ANC) of a class of nonlinear systems in normal form with unknown affine terms. The existence
of the unknown affine terms makes it difficult to achieve learning by using previous methods. To
overcome the difficulties, firstly, an extension of a recent result is presented on stability analysis of
linear time-varying (LTV) systems. Then, with a state transformation, the closed-loop control system is
transformed into a LTV form for which exponential stability can be guaranteed when a partial persistent
excitation (PE) condition is satisfied. Accurate approximation of the closed-loop control system dynamics
is achieved in a local region along a recurrent orbit of closed-loop signals. Consequently, learning of control
system dynamics (i.e. closed-loop identification) from adaptive neural control of nonlinear systems with
unknown affine terms is implemented.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Adaptive neural control has recently attracted tremendous
interest in both control theory and practical applications [1–7,
24,26]. However, the problem of whether the neural networks
(NNs) employed in adaptive neural controllers indeed implement
their function approximation ability has been less investigated. As
a consequence, most of the adaptive neural controllers have to
recalculate the control parameters even for repeating the same
control task.
Motivated by human abilities of ‘‘learning by doing’’ and

‘‘doingwith learned knowledge’’, recently, a deterministic learning
mechanism was presented in [8], by which an adaptive neural
controller is capable of learning the unknowndynamics in a closed-
loop control process. A simple nonlinear system with an unity
control gain was considered in [8]. The deterministic learning
is achieved according to the following elements: (i) tracking
control of the system states to a recurrent reference orbit; (ii)
satisfaction of a partial persistent excitation (PE) condition by the
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localized RBF network; (iii) exponential stability of the closed-
loop system along the tracking orbit, including the convergence of
certain neural weights to their optimal values; and (iv) accurate
approximation of the unknown dynamics in a local region along
the recurrent tracking orbit. A neural learning control scheme was
also proposed which can effectively utilize the learned knowledge
for improved control performance. The deterministic learning
approach provides a simple and efficient solution to the problem
of learning and control for dynamical closed-loop systems.
In this paper, we investigate deterministic learning from neural

control of a general class of nonlinear systems in normal formwith
unknown affine terms. In the literature of nonlinear control, it is
well known that systems with affine terms are more difficult to be
dealt with. From the perspective of learning, it will be shown that
the existence of affine terms also leads to difficultieswhich prevent
the occurrence of learning (i.e. accurate parameter convergence)
in the adaptive neural control process. Therefore, to make the
deterministic learning control more practical on the basis of [8],
it is necessary to investigate how to achieve deterministic learning
for nonlinear systems with unknown affine terms.
Through necessary transformation, a model reference adaptive

(neural) control system can be considered as a perturbed linear
time-varying (LTV) system in the following form:[
ė
θ̇

]
=

[
A (t) BT (t)
−C (t) 0

] [
e
θ

]
+ δ (t) (1)

where e ∈ Rn denotes the state tracking errors, θ ∈ Rp denotes
the parameter estimating errors, A (t) ∈ Rn×n, B (t) ∈ Rp×n,
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C (t) ∈ Rp×n, and δ (t) ∈ R(n+p) represents bounded disturbances
caused by the NN approximation errors. For deterministic learning
from the simple nonlinear systemswith a unit control gain, A (t) in
(1) is time invariant [8]. Stability and convergence of such kind of
LTV systems have been discussed in several works (e.g., [9–11,25]).
For deterministic learning from nonlinear systems in normal form,
however, one difficulty lies in that the unknown affine term will
appear in the closed-loop adaptive system so that A (t) in (1) is a
time-varying term. The stability analysis of this kind of LTV systems
cannot be handled by conventional results of adaptive systems.
Recently, this kind of LTV systems was revisited in [12] and a
new method was provided. Nonetheless, it is still inapplicable
to deterministic learning without necessary extension. Another
difficulty lies in that with the affine terms appeared in the closed-
loop adaptive system, it may amplify the NN approximation errors
and lead to large δ (t). This will prevent the occurrence of learning
even when exponential stability of the nominal part of the closed-
loop adaptive system is achieved.
In this paper, the difficulties concerning deterministic learning

for nonlinear systems with unknown affine terms will be resolved
as follows. Firstly, an extension of the result on stability of
a class of LTV systems [12] is presented. It is shown that
with the satisfaction of a partial PE condition and with some
other mild conditions, exponential stability of this class of LTV
systems can be achieved. Secondly, to overcome the difficulties
caused by the unknown affine terms, a state transformation is
introduced which turns the closed-loop adaptive system into
the form of the perturbed LTV system with small perturbations.
Exponential stability of the perturbed LTV system is obtained,
and convergence of partial neural weights is guaranteed. Accurate
approximation of the closed-loop control system dynamics is
achieved in a local region along a recurrent orbit of closed-
loop signals. Consequently, learning of control system dynamics
(i.e. closed-loop identification) from adaptive neural control of
nonlinear systems with unknown affine terms is implemented.
This result will be useful for further research on learning from
more general nonlinear systems (such as strict-feedback systems
and pure-feedback systems), and is applicable to many industrial
applications.
The rest of the paper is organized as follows: Section 2 presents

problem formulation and preliminary results. Stability analysis of
a class of LTV systems is presented in Section 3. Learning from
adaptive neural control of nonlinear systems in normal form is
presented in Section 4. Section 5 contains the conclusion.

2. Problem formulation and preliminaries

2.1. Problem formulation

Consider the following nonlinear system in normal form
ẋi = xi+1, 1 ≤ i ≤ n− 1
...
ẋn = f (x)+ g (x) u, n ≥ 2

(2)

y = x1
where x = [x1, . . . , xn]T ∈ Rn, u ∈ R and y ∈ R are the state
variables, the system input and output, respectively, both f (x) and
the affine term g (x) are unknown smooth nonlinear functions.
The following reference model is considered:{
ẋdi = xdi+1, i = 1, . . . , n− 1
ẋdn = fd (xd, t)

(3)

yd = xd1
where xd = [xd1, . . . , xdn]T ∈ Rn is the system state, yd is the output
and fd (·) is a known smooth nonlinear function. The system orbit

starting from the initial condition xd(0) is denoted as ϕd. Assume
that the states of the reference model be uniformly bounded,
i.e., xd(t) ∈ Ωd, ∀t ≥ 0, and the system orbit ϕd be a recurrent
motion.1
The objective is to develop an adaptive neural controller using

a localized RBF network such that the output y follows the desired
trajectory yd generated from the reference model, and accurate
NN approximation (learning) of the closed-loop control system
dynamics is achieved in a local region along an orbit of closed-loop
signals.

2.2. Localized RBF networks

The RBF networks can be described by fnn(Z) =
∑N
i=1wisi(Z) =

W T S(Z) [14], where Z ∈ ΩZ ⊂ Rq is the input vector, W =

[w1, . . . , wN ]
T
∈ RN is the weight vector, N is the NN node

number, and S(Z) = [s1(‖Z − ξ1‖), . . . , sN(‖Z − ξN‖)]T, with
si(·) being a radial basis function, and ξi (i = 1, . . . ,N) being
distinct points in state space. The Gaussian function si(‖Z − ξi‖) =
exp

[
−(Z−ξi)T (Z−ξi)

η2i

]
is one of the most commonly used radial basis

functions, where ξi = [ξi1, ξi2, . . . , ξiq]
T is the center of the

receptive field and ηi is the width of the receptive field. The
Gaussian function belongs to the class of localized radial basis
functions in the sense that si(‖Z − ξi‖)→ 0 as ‖Z‖ → ∞.
It has been shown in [14,15] that for any continuous function

f (Z) : ΩZ → R where ΩZ ⊂ Rq is a compact set, and for
the NN approximator, where the node number N is sufficiently
large, there exists an ideal constant weight vector W ∗, such that
for each ε∗ > 0, f (Z) = W ∗T S (Z) + ε(Z),∀Z ∈ ΩZ , where
|ε (Z)| < ε∗ is the approximation error. Moreover, for any
bounded trajectory Zζ (t) within the compact set ΩZ , f (Z) can be
approximated by using a limited number of neurons located in a
local region along the trajectory: f (Z) = W ∗Tζ Sζ (Z) + εζ , where
Sζ (Z) = [sj1(Z), . . . , sjζ (Z)]

T
∈ RNζ , with Nζ < N , |sji | > ι

(ji = j1, . . . , jζ ), ι > 0 is a small positive constant, W ∗ζ =
[w∗j1 , . . . , w

∗

jζ
]
T, and εζ is the approximation error, with

∣∣|εζ | − |ε|∣∣
being small.
Based on previous results on the PE property of RBF networks

[16,17], it is shown in [8,18] that for a localized RBF network
W TS(Z) whose centers are placed on a regular lattice, almost any
recurrent trajectory Z(t) can lead to the satisfaction of the PE
condition of the regressor subvector Sζ (Z).

3. Stability of a class of LTV systems

In this section, we study the exponential stability of a class of
LTV systems associated with adaptive neural control of nonlinear
systems with unknown affine terms.
In [12], under some mild assumptions, sufficient and necessary

conditions for exponential stability of system (1) with A(t) time
varying and δ (t) = 0 was presented.

Assumption 3.1 ([12]). There exists a φM > 0 such that, for all
t ≥ 0, the following bound is satisfied

max
{
‖B (t)‖ ,

∥∥∥∥dB (t)dt
∥∥∥∥} ≤ φM (4)

Assumption 3.2 ([12]). There exist symmetric matrices P (t) and
Q (t) such that P (t) B (t) = C (t) and −Q (t) = AT (t) P (t) +

1 The recurrent motions comprise the most important types (though not all
types) of trajectories generated from nonlinear dynamical systems, including
periodic, quasi-periodic, almost-periodic and even chaotic trajectories (see [13] for
a rigorous definition of recurrent trajectory).
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