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a b s t r a c t

The purpose of this paper is to present a necessary and sufficient condition for irreducibility of nonlinear
input–output delta differential equations. The condition is presented in terms of the common left divisor
of two differential polynomials describing the behaviour of the system defined on a homogenous time
scale. The concept of reduction is explained. Subsequently, the definition of transfer equivalence based
upon the notion of an irreducible differential form of the system is introduced, inspired by the analogous
definition for continuous-time systems.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In the realization problem of a higher order input–output (i/o)
difference or differential equation one is looking for the state
equations that would generate a given i/o equation. In [1] and [2]
it was shown for discrete-time and continuous-time systems,
respectively, that to obtain a minimal (i.e. both observable and
accessible) realization of an i/o equation, the i/o equation has to
be irreducible. So, the first task in solving the realization problem
is to reduce the i/o equation when necessary. Irreducibility may
be checked and the reduced system can be found in many
different ways; see [3,4,1] for the discrete-time case and [2,5,6]
for continuous-time case. One possibility is to associate with
the control system two polynomials, defined over the difference
(or differential, in the continuous time case) field of meromorphic
functions, pretty much in a similar manner to how it has be done
in the linear case. Then, in practical terms, checking irreducibility
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requires finding the left common divisor of these two polynomials;
see [20]. In both discrete-time and continuous-time cases, the
criteria for checking irreducibility are based on similar ideas. The
main difference is that the multiplication rules between the shift
(or differentiation in the continuous-time case) operator and an
element of the difference (resp. differential) field are different,
and they yield different noncommutative rings of polynomials.
Therefore, it seems natural to try to unify the results for discrete-
time and continuous-time cases into one result from which both
would follow. However, in the discrete-time case our formalism
yields a description based on the difference operator in opposition
to the shift operator which was used in [3]. Recently, a delta-
NARX model has been suggested for modelling the nonlinear
control systems and it has been applied to the identification
of a test problem (a van der Pol oscillator) [7]. Comparison
was made with the standard shift operator based NARX model.
It was demonstrated that a delta-NARX model improves the
numerical properties of structure detection and provides a model
that is closely linked to the continuous-time system in terms of
both parameters and structure. These properties of delta-domain
models were earlier shown to hold for linear models in [8].
The calculus on time scales seems to be a perfect language for a

unification of continuous-time and discrete-time cases; see [9]. A
time scale is a model of time. It is an arbitrary closed subset of the
real line. Besides of standard cases of the whole line (continuous-
time case) and the set of integers (discrete-time case), there are
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many examples of time models that may be partly continuous
and partly discrete. One of the main concepts in the time scale
analysis is the delta derivative, which is a generalization of the
classical (time) derivative in the continuous time and the finite
forward difference in the discrete time. Other approaches that
allow the unification of continuous-time and discrete-time cases
can be found in [10,11].
The purpose of this paper is to present a necessary and sufficient

condition for irreducibility of nonlinear i/o delta differential
equation on a homogeneous time scale that accommodates both
the discrete-time and continuous-time cases as special cases.
We will show that one can associate with such a system
two polynomials over the σ -differential field, that belong to
a noncommutative skew polynomial ring. If the system is
reducible, the reduction procedure can be applied to transform
the system into the irreducible form. Using time scale calculus
we will unify the solution of the problem of reduction for given
single-input single-output nonlinear control systems. Next, the
definition of transfer equivalence for nonlinear systems defined
on homogeneous time scales will be given. The notion of transfer
equivalence plays a crucial role in the realization problem.

2. Calculus on a time scale

For a general introduction to calculus on time scales, see [9].
Here we give only those notions and facts that we need in our
paper.
A time scale T is an arbitrary nonempty closed subset of the set

R of real numbers. The standard cases comprise T = R, T = Z,
T = hZ for h > 0, but also T = qZ

:= {qk : k ∈ Z} ∪ {0},
q > 1, is a time scale. The forward jump operator σ : T → T is
defined by σ(t) = inf {s ∈ T : s > t} for t ∈ T, while the backward
jump operator ρ : T→ T is defined by ρ(t) = sup {s ∈ T : s < t}.
Additionally, we set σ(maxT) = maxT if there exists a finite
maxT and ρ(minT) = minT if there exists a finite minT.
The graininess function µ : T → [0,∞) is defined by µ(t) =

σ(t) − t , for all t ∈ T. If µ ≡ const then a time scale T is called
homogeneous. From now on we assume that the time scale T is
homogenous.

Definition 1. Let f : T → R be a function and t ∈ T. Then
the delta derivative of f at the point t is defined to be the
number f ∆(t) (provided it exists) with the property that for each
ε > 0 there exists a neighbourhood U of t in T such that∣∣f (σ (t))− f (s)− f ∆(t)[σ(t)− s]∣∣ 6 ε |σ(t)− s|, for all s ∈ U.
Moreover, we say that f is delta differentiable (on T) provided f ∆(t)
exists for all t ∈ T.

Remark 2. A delta derivative is a natural extension of the time
derivative in the continuous-time case and the forward difference
operator in the discrete-time case.

Let f : T→ R. Define f σ := f ◦σ . Then we have f σ = f +µf ∆.

Theorem 3 (Chain Rule). Let f : R → R be continuously differen-
tiable and suppose g : T → R is delta differentiable. Then f ◦ g :
T → R is delta differentiable and (f ◦ g)∆(t) =

{∫ 1
0 f
′(g(t) +

hµ(t)g∆(t))dh
}
g∆(t).

For a function f : T→ R we define its second delta derivative
f [2] := f ∆∆ provided that f ∆ is delta differentiable on T. Similarly
we define higher order delta derivatives f [n]. Let us denote f ∆σ :=(
f ∆
)σ and f σ∆ := (f σ )∆.

Remark 4. Let f and f ∆ be delta differentiable functions. Then for
a homogeneous time scale Twe have f ∆σ = f σ∆.

Let σ n := σ ◦ · · · ◦ σ︸ ︷︷ ︸
n−times

and f σ
n
:= f ◦ σ n. By the induction

principle one can prove that if f is a delta differentiable function
defined on a homogeneous time scale T, then f σ

n
=

∑n
k=0(

n
k

)
µkf [k].

3. σ-differential fieldK associated with the i/o delta differen-
tial equation

For f : T → R and i 6 k let f [i...k] :=
(
f [i], . . . , f [k]

)
. Let

y : T→ R and u : T→ R be delta differentiable functions.
Consider a single-input single-output dynamical system de-

scribed by a higher order input–output (i/o) delta-differential
equation on the homogeneous time scale T:

y[n] = φ
(
y[0...n−1], u[0...s]

)
, (1)

where u is a scalar input variable, y ∈ Y ⊂ R is a scalar
output variable, φ is a real meromorphic function, and n and s
are nonnegative integers such that s < n. Let ϕ(y[0...n], u[0...s]) :=
y[n]−φ

(
y[0...n−1], u[0...s]

)
. Then Eq. (1) can be rewritten as follows:

ϕ
(
y[0...n], u[0...s]

)
= 0.

Assume that

1+
n∑
i=1

(−1)i+1µi
∂φ

∂y[n−i]
6≡ 0 or

s∑
j=0

(−1)jµj+2
∂φ

∂u[s−j]
6≡ 0 (2)

is satisfied generically, i.e. (2) holds almost everywhere except on
a set of zero measure.
LetR denote the ring of analytic functions in a finite number of

the variables {y[0...n−1], u[k] : k > 0}. The operators σ : R → R
and∆ : R→ R are defined as follows:

σ(F)
(
y[0...n−1], u[0...k+1]

)
:= F

((
y[0...n−1]

)σ
,
(
u[0...k]

)σ)
, (3)

where (y[0...n−1])σ = (y+µy[1], . . . , y[n−1]+µφ(y[0...n−1], u[0...s])),
(u[0...k])σ = u[0...k] + µu[1...k+1], for k > 0, and

∆(F)
(
y[0...n−1], u[0...k+1]

)
:=

∫ 1

0

{
grad F

(
y[0...n−1]

+hµ
[
y[1...n−1], φ

(
y[0...n−1], u[0...s]

)]
, u[0...k] + hµu[1...k+1]

)
×
[
y[1...n−1], φ

(
y[0...n−1], u[0...s]

)
, u[1...k+1]

]T}
dh. (4)

We will use σ(F) and Fσ to denote the action of σ on F . Similarly,
both ∆(F) and F∆ will be used interchangeably. Note that (2)
is equivalent to the fact that the map

(
y[0...n−1], u[0...s]

)
7→(

y[0...n−1], u[0...s]
)
+ µ

(
y[1...n−1], φ(y[0...n−1], u[0...s]), u[1...s+1]

)
is a

submersion (see [12]) and this implies that σ is a monomorphism
of R. Let K be a quotient field of the ring R. The elements of
K are meromorphic functions depending on a finite number of
variables from {y[0...n−1], u[k] : k > 0}. The operators σ and ∆ can
be extended toK using the same formulas (3) and (4). The operator
∆ satisfies a generalization of the Leibniz rule:

(FG)∆ = FσG∆ + F∆G, (5)

for F ,G ∈ K . In noncommutative algebra the derivation satisfying
rule (5) is called a ‘‘σ -derivation’’ (for example, see [13]). Therefore
K is a field equipped with a σ -derivation ∆ such that σ is
a monomorphism of K . The field K with σ -derivation ∆ is a
σ -differential field. Since σ is one-to-one, one can show that there
is a σ -differential overfield K∗ [14], called the inversive closure
of K , such that σ can be extended to K∗, and this extension is
an automorphism ofK∗ (see [13]). Therefore we assume that the
inversive closure of σ -differential fieldK is given and we will use
the same symbol to denote the σ -differential field and its inversive
closure.
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