
Systems & Control Letters 57 (2008) 626–630
www.elsevier.com/locate/sysconle

Input–output feedback linearization for nonminimum phase nonlinear
systems through periodic use of synthetic outputs

Young Il Leea, Basil Kouvaritakisb,∗, Mark Cannonb

a Department of Control and Instrumentation, Seoul National University of Technology, Gongneung-dong, Nowon-gu, Seoul, Republic of Korea
b Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK

Received 28 May 2007; received in revised form 17 December 2007; accepted 16 January 2008
Available online 11 March 2008

Abstract

Input–output feedback linearization provides a convenient means of extending linear control strategies such as output zeroing or pole placement
to the case of nonlinear affine in the input systems, but such extensions cannot be applied in the presence of nonminimum phase characteristics.
This paper overcomes this difficulty through the periodic use of a finite number of synthetic outputs which are so constructed as to define embedded
dynamics with stable zero dynamics. The efficacy of the method is demonstrated by means of a numerical example.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Input–output feedback linearization (IOFL) provides an
appealing means for achieving regulation of setpoint tracking
for single-input single-output (SISO) nonlinear systems which
are affine in the input [1]. However the presence of
nonminimum phase characteristics prevents the use of IOFL,
and, to overcome this, previous work has either resorted to
the use of minimum phase approximations [2,3], or the use of
a synthetic output [4–6], or the combined use of a synthetic
output and resetting [7]. This paper instead considers the offline
definition of ν − 1 synthetic outputs, where ν is some positive
integer, which together with the actual system output are to
be used periodically. A discrete time IOFL control law is
defined at successive sampling instants on the basis of the
actual system output and each synthetic output in turn, and this
cycle is to be repeated every ν samples. The idea here is to
construct the synthetic outputs so that the embedded dynamics
governing the actual system output at intervals of ν sampling
instants are characterised by stable zero dynamics, despite the
zero dynamics of the original system being unstable. Using
this technique, we define a locally stabilizing control strategy
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which achieves output zeroing with respect to the actual output
(albeit at every ν steps); earlier approaches [4–7] deployed a
regulation strategy on synthetic outputs. The efficacy of this is
illustrated through simulations carried out on the model of a
grain dryer [8].

2. Problem formulation

Consider a SISO input affine nonlinear system with state
space representation

x(t + 1) = f (x(t)) + g(x(t))u(t)
y0(t) = C0x(t),

(1)

where x ∈ Rn , and f, g are two n-dimensional vector
functions of x which are assumed to be continuous at the
origin. Without loss of generality, rather than considering the
setpoint tracking problem, here consideration is given to the
problem of output regulation. Under the assumption (which is
made for convenience and without loss of generality) that in
a neighbourhood of the origin (1) has relative degree 1, the
optimal regulation strategy (for the case of no penalty on control
activity) is the Output Zeroing (OZ) control law1:

1 In the case of relative degrees higher than 1, the output zeroing control
move cannot be given in closed form and has to be computed numerically.
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u(t) = −
C0 f (t)

C0g(t)
(2)

since this would make the output zero in one control move and
would keep it there subsequently. This control law however
would fail to stabilize the origin if the zero dynamics of (1)
about the origin were unstable. To circumvent this difficulty, the
current paper proposes the periodic use of OZ control moves.
The first of these is given by (2), and the remainder within each
periodic cycle are defined as OZ moves based on a number of
pre-determined synthetic outputs, defined as:

yi = Ci x, i = 1, . . . , ν − 1. (3)

In the context of the development below, the choice of synthetic
outputs that depend linearly on the state vector makes good
sense; it is noted here that the same linearity assumption has
been made with respect to the actual output, but this is done
purely for convenience and does not affect the results of the
paper which depend on parameters obtained by a process of
Jacobian linearization. For convenience use will be made of the
notation

z(t) = z(kν + j) = zk, j , (4)

where k assumes the values 0, 1, . . . and for each such value j
increments through the sequence {0, 1, . . . , ν−1}. Accordingly
the periodic OZ strategy becomes:

uk, j = −
C j f (xk, j )

C j g(xk, j )
(5)

and thus the first move of each periodic cycle coincides with
(2), which as mentioned above fails to stabilize the origin.
To compensate for this, here the synthetic outputs are chosen
so that the embedded dynamics from t = kν to kν + j are
minimum phase for all j∗ ≤ j , for some integer value 0 <

j∗ < ν. The term minimum phase is used here to indicate that
the zero dynamics are stable, a condition which is guaranteed by
the stability of the Jacobian linearization of the zero dynamics.
The following definition will be needed in the statement of the
result below:

A =
∂ f

∂x

∣∣∣∣
x=0

; B = g|x=0. (6)

N ∈ Rn−1×n is a full rank matrix representation of the left null
space of B satisfying

N B = 0 (7)

and Mi ∈ Rn×n−1 is a full rank matrix representation of the
kernel of Ci satisfying

Ci Mi = 0, N Mi = In−1, i = 0, . . . ν − 1. (8)

Assumption 2.1. There is a neighbourhood of the origin where
(1) has definite relative degree for all Ci ; for convenience this
relative degree will be taken to be 1, it being understood that
extensions to the general case are straightforward.

Theorem 2.1. The Jacobian linearization of the embedded zero
dynamics from t = kν to kν + j of (1) under (5) is stable if and
only if the eigenvalues of

Φ0→ j =

j∏
i=0

NAMi (9)

are less than 1 in modulus.

Proof. Under (5) the evolution of the state from kν + i to
kν + i + 1 is given by

xk,i+1 = f (xk,i ) − g(xk,i )
Ci f (xk,i )

Ci g(xk,i )
= hi+1(xk,i ) (10)

so that the embedded dynamics from kν to kν + j are given by

xk, j = hk, j (hk, j−1(. . . hk+1(xk,0) . . .)) = H j (xk,0). (11)

From (10), given that the control move of (5) tends to zero as
xk,i → 0 it follows that

∂hi+1(xk,i )

∂xk,i

∣∣∣∣
xk,i =0

=
∂ f (xk,i )

∂xk,i

∣∣∣∣
xk,i =0

−

[
g(xk,i )

∂

∂xk,i

(
Ci f (xk,i )

Ci g(xk,i )

)]∣∣∣∣
xk,i =0

= A − B
Ci A

Ci B
. (12)

Hence differentiating the composition of transition maps, H j ,
gives

∂xk, j

∂xk,0
=

j∏
i=0

∂xk,i+1

∂xk,i
=

j∏
i=0

(
A − B

Ci A

Ci B

)
. (13)

By definition, the zero dynamics under consideration maintain
the synthetic outputs at zero, or equivalently ensure that

xk,i = Miβk,i (14)

which is automatically satisfied under (5), provided that the
state at the start of the periodic cycle itself satisfies (14).
Substitution of (14) into (11) and pre-multiplication by N gives
a nonlinear expression for the evolution of β which of course
describes the zero dynamics:

βk, j = N xk, j = N H j (xk,0) = N H j (M0βk,0). (15)

Differentiating this expression and using (12) gives the state
matrix for the linearized dynamics as

∂βk, j

∂βk,0
= N

j∏
i=0

∂xk,i+1

∂xk,i
= N

j∏
i=0

(
A − B

Ci A

Ci B

)
M0. (16)

The result of the theorem follows from the identity

I −
BCi

C Bi
= Mi N . � (17)

Corollary 2.2. The minimum phase property of Theorem 2.1
can be achieved if and only if the pair[
Φ0→ j−1NANĎΦ0→ j−1NAB

]
(18)

is controllable, where N Ď denotes a left inverse of N .
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