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Abstract

In many applications involving multiagent systems, groups of agents are required to agree on certain quantities of interest. In particular, it
is important to develop consensus protocols for networks of dynamic agents with directed information flow, switching network topologies, and
possible system time-delays. In this paper, we use compartmental dynamical system models to characterize dynamic algorithms for linear and
nonlinear networks of dynamic agents in the presence of inter-agent communication delays that possess a continuum of semistable equilibria, that
is, protocol algorithms that guarantee convergence to Lyapunov stable equilibria. In addition, we show that the steady-state distribution of the
dynamic network is uniform, leading to system state equipartitioning or consensus. These results extend the results in the literature on consensus
protocols for linear balanced networks to linear and nonlinear unbalanced networks with time-delays.
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1. Introduction

Modern complex dynamical systems are highly intercon-
nected and mutually interdependent, both physically and
through a multitude of information and communication net-
works. By properly formulating these systems in terms of
subsystem interaction involving energy/mass transfer, the dy-
namical models of many of these systems can be derived from
mass, energy, and information balance considerations that in-
volve dynamic states whose values are nonnegative. Hence, it
follows from physical considerations that the state trajectory of
such systems remains in the nonnegative orthant of the state
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space for nonnegative initial conditions. Such systems are com-
monly referred to as nonnegative dynamical systems in the lit-
erature [1,2]. A subclass of nonnegative dynamical systems
are compartmental systems [2–5]. Compartmental systems in-
volve dynamical models that are characterized by conserva-
tion laws (e.g., mass and energy) capturing the exchange of
material between coupled macroscopic subsystems known as
compartments. Each compartment is assumed to be kinetically
homogeneous, that is, any material entering the compartment is
instantaneously mixed with the material of the compart-
ment. The range of applications of nonnegative systems and
compartmental systems includes biological and physiologi-
cal systems [5,6], chemical reaction systems [7,8], queu-
ing systems [9], large-scale systems [10], stochastic systems
(whose state variables represent probabilities) [9], ecological
systems [11], economic systems [12], demographic systems
[5], telecommunications systems [13], transportation systems,
power systems, thermodynamic systems [14], and structural
vibration systems, to cite but a few examples.

A key physical limitation of compartmental systems is that
transfers between compartments are not instantaneous and
realistic models for capturing the dynamics of such systems
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should account for material, energy, or information in transit
between compartments. Hence, to accurately describe the
evolution of the aforementioned systems, it is necessary to
include in any mathematical model of the system dynamics
some information of the past system states. In this case, the state
of the system at a given time involves a piece of trajectories in
the space of continuous functions defined on an interval in the
nonnegative orthant of the state space. This of course leads to
(infinite-dimensional) delay dynamical systems [15,16].

Nonnegative and compartmental models are also widespread
in agreement problems in dynamical networks with directed
graphs and switching topologies [17,18]. Specifically, dis-
tributed decision-making for coordination of networks of dy-
namic agents involving information flow can be naturally cap-
tured by compartmental models. These dynamical network sys-
tems cover a very broad spectrum of applications including
cooperative control of unmanned air vehicles, distributed sen-
sor networks, swarms of air and space vehicle formations [19,
20], and congestion control in communication networks [21].
In many applications involving multiagent systems, groups of
agents are required to agree on certain quantities of interest. In
particular, it is important to develop consensus protocols for
networks of dynamic agents with directed information flow,
switching network topologies, and possible system time-delays.

In this paper, we use compartmental dynamical system
models to characterize dynamic algorithms for linear and
nonlinear networks of dynamic agents in the presence of
inter-agent communication delays that possess a continuum of
semistable equilibria, that is, protocol algorithms that guarantee
convergence to Lyapunov stable equilibria. In addition,
we show that the steady-state distribution of the dynamic
network is uniform, leading to system state equipartitioning or
consensus. From a practical viewpoint, it is not sufficient to
only guarantee that a network converges to a state of consensus
since steady-state convergence is not sufficient to guarantee that
small perturbations from the limiting state will lead to only
small transient excursions from a state of consensus. It is also
necessary to guarantee that the equilibrium states representing
consensus are Lyapunov stable, and consequently, semistable.
These results extend the results in the literature on consensus
protocols for linear balanced networks to linear and nonlinear
unbalanced networks with time-delays.

2. Mathematical preliminaries

In this section we introduce notation, several definitions,
and some key results concerning linear nonnegative dynamical
systems with time-delay [22,23] that are necessary for
developing some of the main results of this paper. Specifically,
for x ∈ Rn we write x ≥≥ 0 (resp., x � 0) to indicate
that every component of x is nonnegative (resp., positive). In
this case, we say that x is nonnegative or positive, respectively.
Likewise, A ∈ Rn×m is nonnegative4 or positive if every entry

4 In this paper it is important to distinguish between a square nonnegative
(resp., positive) matrix and a nonnegative-definite (resp., positive-definite)
matrix.

of A is nonnegative or positive, respectively, which is written as
A ≥≥ 0 or A � 0, respectively. Furthermore, for A ∈ Rn×n we
write A ≥ 0 (resp., A > 0) to indicate that A is a nonnegative-
definite (resp., positive-definite) matrix. In addition, rank(A)
denotes the rank of a matrix A, spec(A) denotes the spectrum
of A, (·)T denotes transpose, and (·)D denotes the Drazin
generalized inverse. Recall that for a diagonal matrix A ∈ Rn×n

the Drazin inverse AD
∈ Rn×n is given by AD

(i,i) = 0 if A(i,i) =

0 and AD
(i,i) = 1/A(i,i) if A(i,i) 6= 0, i = 1, . . . , n [24, p. 227].

Let Rn
+ and Rn

+ denote the nonnegative and positive orthants of
Rn , that is, if x ∈ Rn , then x ∈ Rn

+ and x ∈ Rn
+ are equivalent,

respectively, to x ≥≥ 0 and x � 0. Finally, let e ∈ Rn denote
the ones vector of order n, that is, e = [1, . . . , 1]

T, and let
ei ∈ Rn denote the elementary vector of order n with 1 in the
i th location and 0’s elsewhere.

The following definition introduces the notion of a
nonnegative (resp., positive) function.

Definition 2.1. Let T > 0. A real function x : [0, T ] → Rn

is a nonnegative (resp., positive) function if x(t) ≥≥ 0 (resp.,
x(t) � 0) on the interval [0, T ].

The next definition introduces the notion of essentially
nonnegative matrices and compartmental matrices.

Definition 2.2 ([12]). Let A ∈ Rn×n . A is essentially
nonnegative if A(i, j) ≥ 0, i, j = 1, . . . , n, i 6= j . A is
compartmental if A is essentially nonnegative and ATe ≤≤ 0.

In the first part of this paper, we consider linear, time-delay
dynamical systems G of the form

ẋ(t) = Ax(t)+

nd∑
i=1

Adi x(t − τi ), x(θ) = η(θ),

− τ̄ ≤ θ ≤ 0, t ≥ 0, (1)

where x(t) ∈ Rn , t ≥ 0, A ∈ Rn×n , Adi ∈ Rn×n ,
τi ∈ R, i = 1, . . . , nd, τ̄ = maxi∈{1,...,nd}τi , η(·) ∈ C+ ,
{ψ(·) ∈ C([−τ̄ , 0],Rn) : ψ(θ) ≥≥ 0, θ ∈ [−τ̄ , 0]} is a
continuous vector-valued function specifying the initial state
of the system, and C([−τ̄ , 0],Rn) denotes a Banach space of
continuous functions mapping the interval [−τ̄ , 0] into Rn with
the topology of uniform convergence. Note that the state of
(1) at time t is the piece of trajectories x between t − τ and
t , or, equivalently, the element xt in the space of continuous
functions defined on the interval [−τ̄ , 0] and taking values in
Rn , that is, xt ∈ C([−τ̄ , 0],Rn), where xt (θ) , x(t + θ), θ ∈

[−τ̄ , 0]. Furthermore, since for a given time t the piece of the
trajectories xt is defined on [−τ̄ , 0], the uniform norm |||xt ||| =

supθ∈[−τ̄ ,0] ‖x(t +θ)‖, where ‖ ·‖ denotes the Euclidean vector
norm, is used for the definitions of Lyapunov and asymptotic
stability of (1). For further details, see [15,16]. In addition, note
that since η(·) is continuous it follows from Theorem 2.1 of
[15, p. 14] that there exists a unique solution x(η) defined on
[−τ̄ ,∞) that coincides with η on [−τ̄ , 0] and satisfies (1) for all
t ≥ 0. Finally, recall that if the positive orbit γ+(η(θ)) of (1) is
bounded, then γ+(η(θ)) is precompact [25], that is, γ+(η(θ))
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