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Robust H∞ output-feedback control of systems with time-delay�
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Abstract

The problem of designing robust dynamic output-feedback controllers for linear, continuous, time-invariant systems with uncertain time-delay
in the measured output and/or the control input and with polytopic type parameter uncertainties is considered. Given a transfer function matrix
of a system with uncertain real parameters that reside in some known ranges, an appropriate, not necessarily minimal, state–space model of
the system is described which permits reconstruction of its states. The resulting retarded model incorporates the uncertain parameters of the
transfer function matrix in the state–space matrices and the uncertain time-delay that occurs in the control channel. To this model, the recent
theory of robust H∞ state-feedback control for retarded systems is applied. The theory is used to solve a benchmark problem of distillation
column robust control design.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

One of the main contributions of H∞ control theory is the
ability to construct controllers and estimators that are robust in
the sense that they are built to cope with prescribed ranges of
parameter uncertainties. Applying the method of convex pro-
gramming, relatively simple solutions have been obtained to
the problems of state-feedback stabilizing and disturbance at-
tenuation in linear systems with polytopic or norm-bounded
uncertainties. Unfortunately, it has soon been realized that the
corresponding output-feedback control problems are not con-
vex [4], and various iterative methods have been suggested to
derive the required controllers [4]. These methods are known to
converge locally and they do not necessarily achieve a global
minimum for the disturbance attenuation level.

This obstacle has also been encountered in the design of
output controllers in cases where a time-delay appears in the
control channel. In the case where the parameters of the sys-
tem are all known, a solution to the H∞ control problem was
achieved by [8]. This solution, however, does not cope with pa-
rameter uncertainties and it requires the knowledge of the delay.
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On the other hand, a comprehensive treatment of systems with
time-delay has been made based on the Lyapunov–Krasovskii
approach [1]. While the latter provides a means for dealing
with parameter uncertainties and constant unknown time-delay
it entails an overdesign that stems from reducing a problem
which is of infinite dimensions in nature to one that is of finite
dimensions. In the presence of parameters uncertainties, these
latter methods are suitable for designing state-feedback con-
trollers; unfortunately, however, they cannot guarantee stability
and performance when applying output-feedback control.

Recently, a method has been proposed for the design of
robust output-feedback controllers for discrete-time systems
without delay but with polytopic type uncertainties [10]. An
augmented state–space model for the nonretarded system is
first constructed which includes delayed versions of the sys-
tem inputs and outputs. On this model robust state-feedback
controllers are applied which satisfy the performance require-
ments. These controllers are then translated into equivalent
dynamic output-feedback controllers. A similar approach is
adopted in the present paper for the continuous-time case with
uncertain delay in the control channel. Also here, an augmented
state–space model is achieved to which a state-feedback con-
trol corresponds to a dynamic output-feedback controller that
is applied to the original system. It is shown that the uncertain
delay in the control channel can be translated to a state-delay
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in the augmented state–space description. The recent result on
the robust state-feedback stabilization and control of systems
with state-delays of [9] are then applied to obtain the required
output-feedback controller.

The new theory is used to solve the benchmark problem of
robust control design of distillation columns [6]. This problem
has been studied by several authors, see [7] and references
therein. It is shown how an application of a simple PI controller
and a simple notch prefilter satisfies the design specifications,
in spite of large parameter uncertainty and the uncertain delay
in the control channel.

Notation: Throughout the paper, the superscript ‘T’ stands for
matrix transposition, Rn denotes the n dimensional Euclidean
space with vector norm | · |, Rn×m is the set of all n × m

real matrices, and the notation P > 0, for P ∈ Rn×n means
that P is symmetric and positive definite. The space of square
integrable functions over [0 ∞) is denoted by L2, and ‖ · ‖2
stands for the standard L2-norm, ‖u‖2=(

∫∞
0 u(s)Tu(s) ds)1/2.

‖ · ‖∞ denotes the H∞ -norm. In is the unit matrix of order n,
0n,m is the n × m zero matrix and diag{A, B} denotes a block
diagonal matrix with A and B on the diagonal. d(m)(t) denotes
the mth derivative of the vector function d(t) and by col{a, b}
we denote the vector [aT bT]T.

2. Problem formulation

We consider the following linear, time-invariant, multi-
input–multi-output (MIMO) system:

G(s) = D̄(s)−1N̄(s)e−s�, (1)

where D̄(s) = ∑l1
k=0D̄ks

k and N̄(s) = ∑l1−1
k=0 N̄l1−1−ks

k are
m × m and m × r polynomial matrices, respectively, m is
the dimension of output vector y and r is the dimension of
the control input u to the plant. Time-delay � is an uncer-
tain constant time-delay in either the control input channel
or in the measured output that, for a given scalar bound h,
satisfies:

0���h. (2)

We assume that D̄(s) is row reduced, namely that
deg det{D̄(s)} =∑m

i=1li = n̄, where li is the degree of ith row
of D̄(s) (it is assumed that li � li+1, i = 1, . . . , m) and n̄ is
the minimal order of G(s) [3]. We denote by D̄h the coeffi-
cient matrix of the highest order term in each row of D̄(s). To
simplify our derivation in the sequel we assume that D̄h does
not incorporate uncertain parameters. Thus, we can assume,
without loss of generality, that D̄h = Im.

The system parameters are not completely known. We as-
sume that they lie within a polytope

� = Co{�1, �2, . . . ,�L̄}, (3)

where �j =
[
N̄0,j . . . N̄l1−1,j

D̄0,i . . . D̄l1−1,j

]
, j =1, . . . , L̄, are the ver-

tices of the polytope.

We seek a dynamic output-feedback controller whose transfer
function matrix is given by the following left matrix fractional
description:

H(s) = Ā−1(s)B̄(s) (4)

of an appropriate order.
In the development below we consider an additional finite

energy disturbance vector w(t) ∈ Rq . We also consider an
objective vector signal z(t) ∈ Rp that will be defined below
according to the performance requirements. We address the
following problem:

The robust H∞ control problem: For a prescribed scalar
� > 0, find a controller that asymptotically stabilizes the system
and satisfies

J∞ =
∫ ∞

0
(z(s)Tz(s) − �2w(s)Tw(s)) ds < 0

∀w(t) /≡ 0 ∈ L2 (5)

over the entire uncertainty polytope and for all allowed
delays �.

We note that the initial conditions of the system is assumed
to be zero.

Remark 1. The theory below can readily be extended to the
case of different delays �i , i = 1, . . . , q in the input channels,
where we have the following plant model:

G(s) = D̄(s)−1
q∑

i=1

N̄i(s)e
−s�i .

For the sake of simplicity of the notations and in order to avoid
matrices of large size, we treat below the case of q = 1.

3. The augmented state–space model

It follows from (1) and the stated model assumptions that(
sl1Im +

l1−1∑
k=0

D̄ks
k

)
Y (s) =

(
l1−1∑
k=0

N̄l1−1−ks
k

)
e−s�U(s). (6)

Note, that the last j rows in D̄i and N̄l1−1−i , 0� i� l1 −
lm−j+1 − 1, j = 1, . . . , m − 1, are identically zero.

Choosing in (4):

Ā(s) = sl1−1Im +
l1−2∑
k=0

Āks
k and B̄(s) =

l1−1∑
k=0

B̄l1−1−ks
k (7)

we obtain the following:(
sl1−1Im +

l1−2∑
k=0

Āks
k

)
U(s) =

(
l1−1∑
k=0

B̄l1−1−ks
k

)
Y (s). (8)

The configuration of the system and its controller is described
in Fig. 1.

We define the following state vector �(t)=col{y(l1−1)(t), . . .

y(t), u(l1−2)(t), . . . , u(t)}. Hence, we have the following
state–space realization for the system of (1)–(4).

�̇(t) = A0�(t) + A1�(t − �) + B0ū(t) + B1ū(t − �), (9a)



Download	English	Version:

https://daneshyari.com/en/article/750432

Download	Persian	Version:

https://daneshyari.com/article/750432

Daneshyari.com

https://daneshyari.com/en/article/750432
https://daneshyari.com/article/750432
https://daneshyari.com/

