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Abstract

The problem of stabilizing a second-order SISO LTI system of the form ẋ = Ax + Bu, y = Cx with feedback of the form u(x) = v(x)Cx is
considered, where v(x) is real-valued and has domain which is all of R2. It is shown that, when stabilization is possible, v(x) can be chosen
to take on no more than two values throughout the entire state-space (i.e., v(x) ∈ {k1, k2} for all x and for some k1, k2), and an algorithm for
finding a specific choice of v(x) is presented. It is also shown that the classical root locus of the corresponding transfer function C(sI−A)−1B

has a strong connection to this stabilization problem, and its utility is demonstrated through examples.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The study of hybrid systems is an area that has pervaded
research for more than a decade (see, e.g., [2–6,8,9,11,13,14]).
In particular, stabilization of continuous time systems via hybrid
feedback is a problem that has received much attention in the
recent literature. Artstein first addressed this question through
examples [1]. Litsyn et al. show in [10] that the linear system

ẋ = Ax + Bu, y = Cx (1)

with (A, B) reachable and (C, A) observable can be stabilized
via a hybrid feedback controller which uses a countable num-
ber of discrete states (and no continuous states) and which only
depends upon the output y as opposed to the entire continuous
state x. A natural question arises as to whether a hybrid feed-
back controller can be designed which uses a finite number of
states instead. For the most part, the answer to this question is
still open, though a partial answer has been given by Hu et al.
in [7] based upon the so-called conic switching laws of [15,16].
In [7], it is shown that, for a certain class of single-input,
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single-output (SISO) second-order systems which are reachable
and observable, there exists a feedback control law of the form
u(x) = v(x)Cx where

v(x) =
{

k1 if x1x2 �0,

k2 if x1x2 < 0
(2)

with x = [x1 x2]′ such that the resulting closed-loop system

ẋ = Ax + v(x)BCx (3)

is globally exponentially stable. A control law of the form (2)
is desirable as it can be implemented as a switch between two
static gains which multiplies the output y = Cx. Note that, in
general, the above strategy does not always work as the result of
[10] sometimes requires a more complicated hybrid feedback
structure to achieve stability, even when the system described
by (1) is reachable and observable.

Example 1.1. Consider (1) with

A =
[

2 −1
−1 2

]
, B =

[
0
1

]
, C = [0 1 ] .

This system is reachable and observable, but (3) is not stable for
any real-valued choice of v(x) ≡ v(x1, x2), not just v(x1, x2) of
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the form (2). To see this, first note that the region x1 < 0, x2 > 0
is invariant under the flow of (3) for any choice of v(x1, x2).
Indeed, when x1 = 0, ẋ1 = −x2 < 0, and when x2 = 0, ẋ2 =
−x1 > 0 for all choices of v(x). Moreover, when x1(0) < 0 and
x2(0) > 0, ẋ1 = 2x1 − x2 < 0, which means that x1(t) is strictly
decreasing, and, hence, does not decay to zero regardless of the
choice of v(x1, x2).

The goal of this paper is to answer the following questions:
under what conditions on A ∈ R2×2, B ∈ R2×1 and C ∈ R1×2

can the closed-loop system (3) be made asymptotically stable
for some choice of v(x1, x2)? And, moreover, when stability is
achievable, how may one design v(x1, x2) explicitly? As it turns
out, the answer to the first question has a strong connection
to the classical control notion of root locus. Essentially, if one
considers control laws of the form v(x1, x2)=k for some k ∈ R,
then the system (3) is stabilizable in only one of two situations:

• There exists a value of k such that the matrix A + kBC is
Hurwitz and, hence, (3) is exponentially stabilizable via static
output feedback.

• There is no value of k for which A + kBC is Hurwitz, but
there does exist a value of k for which the eigenvalues of
A + kBC are complex. In this case, v(x1, x2) can be chosen
to take on only two values k1 and k2 throughout the entire
state-space, i.e., v(x1, x2) ∈ {k1, k2}, where k1 and k2 are
appropriately selected real constants, and global exponential
stability can be achieved.

A third situation can exist in which there exists no value of k
for which A+ kBC is Hurwitz and the eigenvalues of A+ kBC
are real for all k. It is precisely these situations for which no
choice of v(x1, x2) will yield asymptotic stability.

Note that, unlike [10], the switching strategies employed here
and in [7] in general require full knowledge of the state x of (1)
rather than just knowing the output y = Cx. While we will not
formally show this here, an appropriate first-order LTI observer
of the plant state x can be designed to implement a slight variant
of the control laws we discuss here (see [12] for details of this
work). The work we discuss here is a necessary precursor to
this more general problem, much like the linear system pole
placement problem via state feedback is a precursor to the pole
placement problem via output feedback.

The structure of the paper is as follows. First, we examine
two particular case studies in which the form of the B and C
vectors have special structure and analyze the conditions on
the matrix A which will guarantee stability. Also, we will de-
rive explicit forms for v(x1, x2) which can be used to achieve
stability when it is possible to do so. Next, we will show that,
through appropriate coordinate transformations, all nontrivial1

problems can be transformed into either one of these two case
studies and then will use this to establish the main result. Fi-
nally, we explore a general method of designing such controllers

1 By “nontrivial”, we refer to problems in which neither B nor C is
identically 0.

(when they exist) and provide several examples to illustrate the
methodology.

2. Case studies

In this section, we explore two specific case studies in which
the A, B, and C matrices of (1) have particular structures. Using
appropriate coordinate transformations, we will then relate the
results of this section to derive the main result for general A,
B, and C.

2.1. Case 1

We first assume a system of the following structure:

A =
[
a b

c 0

]
, B =

[
0
1

]
, C = [0 1 ] , (4)

where a, c ∈ R, and b�0. Here, (3) takes the form[
ẋ1
ẋ2

]
=

[
a b

c v(x1, x2)

] [
x1
x2

]
. (5)

We summarize the possibilities for stabilizability as a function
of the parameters a, b, and c in the proposition below:

Proposition 2.1. For system (5):

(1) If bc = 0, then (5) is exponentially stabilizable via static
output feedback if a < 0 and is not stabilizable for any
choice of v(x1, x2) otherwise.

(2) If b > 0 and c > 0, when v(x1, x2) = k for some constant
k, then the eigenvalues of (5) are real for all k, and (5) is
either exponentially stabilizable via static output feedback
or is not stabilizable by any choice of v(x1, x2).

(3) If b > 0 and c < 0, when v(x1, x2)= k for some constant k,
then the eigenvalues of (5) are not real for all k, and (5) is
exponentially stabilizable either by static output feedback
or by feedback of the form

v(x1, x2) =
{

k1 if w′
1x = 0,

k2 if w′
1x �= 0

for some appropriate choice of w1, k1, and k2.

We prove each part separately below.

Proof of Part 1. Note that if b = 0, the system described by
(4) has an uncontrollable mode. In this case, stabilizability is
possible if and only if a < 0 and can be achieved via v(x1, x2)=
k, where k < 0. In a similar vein, if c=0, (4) has an unobservable
mode. Noting that any initial condition with x2(0)= 0 satisfies
x2(t)=0 for all t, it is again clear that stabilizability is possible
if and only if a < 0 and can be achieved by setting v(x1, x2) to
a negative real constant.

Proof of Part 2. If we set v(x1, x2) = k for some constant k,
the characteristic polynomial of (5) is given by

s2 − (a + k)s + ak − bc. (6)
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