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a  b  s  t  r  a  c  t

It remains  a challenge  to accurately  calibrate  a sensor  subject  to environmental  drift.  The  calibration  task
for such  a sensor  is  to  quantify  the relationship  between  the  sensor’s  response  and  its  exposure  condition,
which  is  specified  by  not  only  the  analyte  concentration  but also  the  environmental  factors  such  as
temperature  and  humidity.  This  work  developed  a  Gaussian  Process  (GP)-based  procedure  for  the  efficient
calibration  of  sensors  in  drifting  environments.  Adopted  as  the  calibration  model,  GP  is  not  only  able  to
capture the  possibly  nonlinear  relationship  between  the  sensor  responses  and  the  various  exposure-
condition  factors,  but  also able  to provide  valid  statistical  inference  for  uncertainty  quantification  of
the  target  estimates  (e.g.,  the  estimated  analyte  concentration  of  an unknown  environment).  Built  on
GP’s  inference  ability,  an  experimental  design  method  was developed  to achieve  efficient  sampling  of
calibration  data  in  a batch  sequential  manner.  The  resulting  calibration  procedure,  which  integrates
the  GP-based  modeling  and  experimental  design,  was  applied  on  a simulated  chemiresistor  sensor  to
demonstrate  its  effectiveness  and  its efficiency  over  the  traditional  method.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Chemical sensors have been widely used in indoor and outdoor
environment monitoring, vehicle exhaust measurement, human
breath detection, etc [1–3]. It has been long recognized that
the responses of chemical sensors, especially chemiresistors, are
affected by the drift of environmental factors such as temperature
and humidity [4–7]. To reduce detection errors and false alarm, it is
important to accurately calibrate a sensor in a drifting environment,
which primarily motivated this work. The environmental factors
are denoted as the vector x, and the task of sensor calibration is to
establish the functional dependence of the sensor response r upon
the analyte concentration c as well as x.

Quantifying the c − x − r relationship is challenging due to two
main reasons: First, the variables (c, x) may  affect the response r in
a nonlinear fashion and also interact nonlinearly with each other.
The underlying mechanism is complicated [8–11] and difficult
to be adequately captured by traditional regression analysis [6].
Second, to estimate a calibration model of high dimension, an
extremely large sample size is typically required by the classic
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design of experiments (DOE) [6,12]. Thus, there is a need to develop
new modeling and DOE methods for the efficient calibration of
sensors subject to environmental drift.

While focusing on calibrating sensors with environmental drift,
this work falls into the research efforts to calibrate sensors with
general drifting behaviors, which can be classified into two  cate-
gories [13,14]: external (i.e. environmental) and internal drifts. The
latter is caused by the physical and/or chemical changes of the sen-
sor itself, and examples of such changes include re-organization of
the sensing materials and irreversible interaction with analytes.
When calibrating drifting sensors, most of the literature used a
reference-based linear compensation or linear regression to quan-
tify the drifting effects [15–18]. Recognizing the possible nonlinear
nature of sensor drifts, powerful nonlinear models have also been
employed, such as neural network [6,19], kernel ridge regression
[20] and nonlinear supporting vector machine [21]. However, in
this stream of nonlinear modeling work, no effort was ever made
to quantify the uncertainty of the target estimates (e.g., the ana-
lyte concentration estimated by the calibration model from an
observed sensor response). This is at least partly due to the diffi-
culties in deriving valid statistical inference (i.e., quantifying model
uncertainty) based on those models [22,23]. It is known that sta-
tistical inference lays the basis for optimum DOE: Experiments are
designed to minimize the uncertainty on the model estimates of
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interest [24–26]. Thus, optimum DOE is a research issue that has
barely been touched in the nonlinear model-based sensor calibra-
tion.

In light of the discussions above, our objective is to develop a
statistical procedure, which leads to a calibration model of the high-
est quality by using the least experimental effort. In this work, the
calibration model assumes the form of a Gaussian process (GP),
which is highly flexible and able to capture practically any con-
tinuous functional relationships. GP is chosen over other powerful
nonlinear models because of its statistical inference capability [27],
which allows for uncertainty quantification and provides the nec-
essary basis for optimum DOE. For sensor calibration, the inference
issues are further complicated by the coexistence of forward mod-
eling and inverse estimation (as will become clearer in Section 2.1),
and hence a GP-based bootstrap resampling method is developed
in this work. The DOE is performed in a batch sequential manner
to circumvent the dilemma that the optimum DOE depends on the
true c − x − r relationship, which however, is unknown at the stage
of designing experiments [28,25,24]. A learning process is allowed
in such a sequential procedure: For the design of a new batch of
experiments to be performed, all the information derived from the
experimental data already collected is utilized to search for the
optimum DOE of that new batch; and the DOE optimization seeks
to minimize the calibration model uncertainty with a given batch
size.

The remainder of the paper is organized as follows: Section 2
presents the formulation of the calibration model, which takes the
form of a GP. The GP-based model fitting and statistical inference
issues are discussed in Section 3. The batch sequential procedure
for sensor calibration is described in Section 4. Section 5 is devoted
to an empirical study to evaluate the effectiveness and efficiency of
the calibration procedure. A brief summary is given in Section 6.

2. Formulation of calibration model

2.1. Calibration model

For a sensor exposed to drifting environments, its calibration
model needs to functionally relate the sensor response r to the tar-
get analyte concentration c as well as the environmental factors x.
For notational convenience, all the exposure-condition factors are
denoted as the vector w = (c, x�)� of d dimension, with d being a
positive integer. The sensor response can be generally written as

r(w) = E[r(w)] + � = F(w) + �, w ∈ W (1)

where F(w) quantifies the expected sensor response E[r(w)] as a
function of w.  The feasible region of interest for exposure con-
ditions is represented by W. The sensor response r is subject to
random error �, which arises from instrument noise, variation of
sensing materials, etc. The random error � is assumed to be inde-
pendent and identically distributed (i.i.d.). The exposure condition
w is considered as deterministic, which complies with the actual
experimental settings: In calibration experiments, w can be speci-
fied with extremely high accuracy and precision.

The calibration model fitted from experimental data is denoted
as F̂(w), or equivalently F̂(c, x). In operational use, F̂(c, x) is coupled
with the sensor device to quantify the target analyte. The observed
sensor response r0 and the observed values x0 for the environmen-
tal factors (e.g., temperature and humidity) are used to estimate
the underlying analyte concentration c0 as follows

ĉ0 = F̂−1(r0, x0). (2)

In (2), F̂−1 denotes the inverse function of F̂ with respect to
(w.r.t.) c at given x0. This inverse function is assumed to exist in
the region W considered, because otherwise the sensor would not
be applicable at all.

Model (1) is also referred to as forward model, since it
reflects the forward direction of calibration experiments: For a
pre-specified w,  the response r is observed. Whereas, when the
calibration model is coupled with the sensor device for monitor-
ing, the inverse estimation of analyte concentration from observed
r needs to be performed, as shown in (2).

2.2. Gaussian process model

As mentioned in Section 1, a GP is chosen in this work to model
the functional dependence of r upon w, and the GP calibration
model (1) is represented as

r = F(w) + � = � + M(w) + �, (3)

where � is the mean parameter, and M(w) is a realization of a mean-
zero stationary GP with constant variance �2. The random error �
follows a continuous probability distribution (e.g., normal). In this
work, it is assumed that the variance of � is a constant �2, which
is a typical assumption for sensor calibration [29,30]. However, it
is worthy of noting that the GP model can be extended to accom-
modate general variance structures of the errors, as in Ankenman
et al. [31].

The GP M(·) is characterized by its correlation function
[32], which is denoted as Corr(M(w), M(w′)), where w =
(w1, w2, . . .,  wd)� and w′ = (w′

1, w′
2, . . .,  w′

d
)� represent two dis-

tinct exposure conditions. In this work, we adopted the
widely-used squared exponential form [27] for the correlation
function:

Corr(M(w), M(w′)) = K(w, w′) = exp

{
d∑

h=1

− �h(wh − w′
h)2

}
, (4)

where � = (�1, �2, . . .,  �d) is a vector of unknown parameters to be
estimated from the experimental data. It is required that �h > 0, and
a smaller value of �h tends to provide a smoother response surface.
Other choices of the correlation forms can be found in the literature
[24,27].

For a collection of I distinct exposure conditions {wi ; i = 1, 2, . . .,
I} with I being a positive integer, an I × I correlation matrix R(�) is
defined as:

R(�) =

⎛⎜⎜⎜⎜⎝
1 K(w1, w2) . . . K(w1, wI)

K(w2, w1) 1 . . . K(w2, wI)

...
...

. . .
...

K(wI , w1) K(wI , w2) . . . 1

⎞⎟⎟⎟⎟⎠ . (5)

Along with an arbitrary condition w0, we further define the
following I × 1 vector

v(w0; �) =

⎛⎜⎜⎜⎜⎝
K(w0, w1)

K(w0, w2)

...

K(w0, wI)

⎞⎟⎟⎟⎟⎠ . (6)

3. Model estimation and inferences

3.1. Experimental data for sensor calibration

To calibrate a sensor, experimental data has to be collected at a
range of exposure conditions. The calibration sample data can be
represented as

{(wi, rj(wi)); i = 1, 2, . . .,  I, j = 1, 2, . . .,  n}. (7)
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