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a b s t r a c t

For 1-D systems, the state-space approach has perhaps become the most popular method of analyzing
these systems. Central to the idea of the state-space approach is the ability to write the system equations
in a first-order form by introducing new variables called the state variables. There have been several
attempts to imitate the state-space framework for n-D systems. Introduction of behavioral theory by Jan
C. Willems, has given fresh impetus to this attempt to imitate state-space framework for n-D systems. In
this paper, dedicated to JanWillems, we provide our recent attempt at obtaining a state-space framework
for n-D systems.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Jan C. Willems, in his celebrated paper Paradigms and puzzles
in the theory of dynamical systems [1], wrote: ‘‘In engineering, par-
ticularly in control and signal processing, there has always been
a tendency to view systems as processors, producing output sig-
nals from input signals. In many applications in control engineer-
ing and signal processing, it will, indeed, be eminently clear what
the inputs and the outputs are. However, there are also many ap-
plications where this input–output structure is not at all evident
(an example at point is in the terminal behavior of an electrical
circuit)’’. Willems pointed out a number of situations where it is
indeed impractical to assume an input/output structure on the sys-
tem variables. Examples include Kepler’s laws of planetarymotion,
econometrics [2], economics (relation between production, capital
cost and labor cost) anddiscrete event systems [1].Willems also ar-
gued that there are dynamical systems (e.g., Leontief economy [2]),
for which it is outright impossible to obtain an input/output model.
In a series of works [1–6] Willems brought about a radical change
in the way a mathematical model for dynamical systems should
be viewed. He showed that systems viewed as maps from inputs
(plus initial conditions) to outputs is perhaps not the most suited
approach as a modeling paradigm for dynamical systems. There is
in fact amore fundamental object, the behavior of the system– that
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is, the collection of trajectories allowed by the laws of physics ap-
plied to the system – that provides a better mathematical model
for dynamical systems. With this rudimentary object – the be-
havior – Willems succeeded in deducing – and refining where
required – several existing notions of dynamical systems: linear-
ity, shift/time-invariance, input/output representation, autonomy,
controllability, observability, stability, stabilizability, detectability,
state-variables, etc. Thiswas a remarkable feat, a paradigm shift, in-
deed. This approach became known as the behavioral approach to
systems theory.

The limitations of the input/output approach become much
more exposed formultidimensional systems (also callednD systems)
— that is, dynamical systems with more than one independent
variables. For example, consider the system described by the
following partial differential equation (PDE):

∂w1

∂x1
−
∂w2

∂x2
= 0.

Although one may view w2 as an input and w1 as an output,
modeling the system as a mapping from w2 to w1 is fraught
with technical problems. (For instance, the ‘transfer function’ here
would be s2

s1
, which has numerator and denominator sharing a

common root! See [7, Remark 76] for a more elaborate discussion
on this.) However, the behavior (that is, the set of solutions of
the above equation) still exists, and hence, many system-theoretic
questions posed in behavioral approach of 1D systemswouldmake
perfect sense for this system too. Spurred by Willems’ treatment
of 1D systems, issues like autonomy, controllability, observability,
stability for nD systems were tackled and resolved using the
behavioral approach (see [8] for n = 2, and [7,9,10] among others
for general n).With this development, the behavioral approach has
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become one of the strongest contenders for a grand unified theory
of systems and control.

Despite the success of the behavioral approach to nD systems,
the current state-of-the-art lags far behind its 1D counterpart. On
several issues, for which there has been a well-accepted solution
in 1D systems, for nD systems a successful resolution has either
completely evaded the community, or there have been many
resolutions none of which were universally acceptable. Defining
state-variables and obtaining state-space representations from a
given representation of an nD system is one such issue that is still
largely open. In this paper, we hope to provide a partial answer
to this issue. State-space representation of nD systems has been
an active field of research, especially for n = 2; see [11–14,8]
among many notable works. However, these works suffer from a
crucial drawback: their restricted applicability. Indeed, in each of
the earlier works, several restrictive assumptions were made. For
example, in [12–14] that deal with state-space models for discrete
2D systems, the systems concerned are assumed to satisfy a certain
notion of causality in 2D integer grid. Needless to say, many 2D
systems do not satisfy this assumption. In this paper, we provide a
methodology to construct state-space and a first order evolution
law for general nD systems that are described by linear partial
differential/difference equations with constant real coefficients;
we make only one assumption: the system is autonomous.

2. Background

2.1. nD systems

Following Willems, we define a dynamical system by a triplet
(T,W,B), where T is the indexing set (the set of independent
variables over which the system’s variables, w, evolve), W is the
signal space (the set fromwhere themanifest variables take values),
and B is the behavior of the system (the subset of the set of
all possible trajectories, WT, that are allowed by the system). In
this paper, we shall assume W = Rw; w denotes the cardinality
of the vector w. These variables w are called manifest variables.
Multidimensional (n D) systems are characterized by the fact that
they have n independent variables; that is, the indexing set T is
either Zn or Rn. We shall use the term continuous or discrete n D
systems for the case when T = Rn or T = Zn, respectively. The
letter t will be used to denote the independent variable; that is, t ∈

Rn for continuous systems, and t ∈ Zn for discrete systems. In this
paper, we are going to look at a special kind of nD systems, namely,
systems that are described by linear partial differential/difference
equations with constant real coefficients.

Behaviors of continuous nD systems are sets of solutions to
partial differential equations (PDEs). Such PDEs are written using
polynomials in partial differential operators. Let ∂i denote the
partial differential operator with respect to the variable ti, that
is, ∂i =

∂
∂ti

. The polynomial ring in the variables {∂1, . . . , ∂n} is
denoted by R[∂1, . . . , ∂n]. We often use the short-hand ∂ to denote
the n-tuple {∂1, . . . , ∂n}. The idea of solutions of PDEs intrinsically
depends on the function space where solutions are sought. In this
paper, we shall consider the space of smooth functions, denoted
by C∞(Rn,Rw). Thus, a behavior B of a continuous nD system,
described by a set of linear partial differential equations with
constant real coefficients, can be defined as

B :=

w ∈ C∞(Rn,Rw) | R(∂)w = 0


, (1)

where R(∂) ∈ R•×w
[∂]. For obvious reasons, Eq. (1) is called a kernel

representation of B and R(∂) is called a kernel representation matrix
of B. We write B = ker R(∂) for brevity.

For discrete nD systems, the role of ∂is is played by the shift
operators, σis. In this case, the function space that we consider

is the space of vector valued (w tuple) sequences indexed by Zn,
i.e., (Rw)Z

n
= {w : Zn

→ Rw}. In this paper, we use the symbol
W(Zn,Rw) to denote this space. The ith shift operator σi acts on a
discrete trajectoryw ∈ W(Zn,Rw) as

(σiw)(t1, . . . , tn) = w(t1, . . . , ti + 1, . . . , tn), (2)

for all (t1, . . . , tn) ∈ Zn. Note that σ−1
i is a legitimate operator

on W(Zn,Rw). Thus, unlike the continuous case, the operator
algebra for the discrete case contains polynomials having terms
with (finite) positive as well as (finite) negative powers. Therefore,
the operator algebra, in this case, is given by the Laurent
polynomial ring in the variables {σ1, . . . , σn}. We denote this ring
by R[σ1, σ

−1
1 , . . . , σn, σ

−1
n ]. Like in the case of partial differential

operators, we shall use the singleton σ to denote the n-tuple
{σ1, . . . , σn}, and, likewise, we shall write R[σ, σ−1

] to denote
the n-variable Laurent polynomial ring in the shifts {σ1, . . . , σn}.
Consequently, a behavior B of a discrete nD system, which is the
solution set of a system of partial difference equations gets defined
as

B :=

w ∈ W(Zn,Rw) | R(σ)w = 0


, (3)

where R(σ) ∈ R•×w
[σ, σ−1

]. As in the continuous case, Eq. (3)
is called a kernel representation of B and R(σ) is called a kernel
representation matrix, while B is written in short as B = ker R(σ).

It is apparent from the last two paragraphs that continuous and
discrete systems share a commonmodel of description – the kernel
representation – with only the operator algebras and the function
spaces being different. This commonality is utilized throughout
this paper — so much so that we use common symbols to denote
various objects that relate to both discrete and continuous systems.
For example, A is the operator algebra (A = R[∂] (continuous), or
R[σ, σ−1

] (discrete)), F w
n is the function space (F w

n = C∞(Rn,Rw)
(continuous), orW(Zn,Rw) (discrete)), ξ is the n-tuple of operators
(ξ = ∂ (continuous), or σ (discrete)). We shall use ξ ν to denote
the monomial ξ ν11 · · · ξ νnn , where ν = (ν1, . . . , νn) ∈ Zn. The
collection of all nD systems that have w manifest variables and
are described by linear partial differential/difference equations is
denoted by Lw

n . We often abuse this notation and write B ∈ Lw
n .

Thus, a continuous/discrete behavior B ∈ Lw
n is described as B =

ker R(ξ) ⊆ F w
n , where R(ξ) ∈ A•×w. Another representation of

B ∈ Lw
n , called a latent variable representation, is required in the

sequel. In this representation, B ∈ Lw
n is described as

B :=

w ∈ F w

n | ∃ℓ ∈ F r
n such that R(ξ)w = M(ξ)ℓ


, (4)

where R(ξ) ∈ Ag×w and M(ξ) ∈ Ag×r . The variables ℓ are called
latent variables.

2.2. The equation module and the quotient module

Following the trend set byWillems for 1D systems, in this paper,
we treat nD systems algebraically via the operator algebra A. In
this connection, two algebraic objects are of great importance to
the analysis. The first one of these algebraic objects is called the
equation module, denoted by R, and is defined as follows: suppose
B ∈ Lw

n is given by a kernel representation as B = ker R(ξ), with
R(ξ) ∈ A•×w, then R is defined to be the set of all (row-)vectors in
A1×w that can bewritten as linear combinations of the rows of R(ξ)
with coefficients from A. This R is a submodule of the A-module
A1×w. With R in place, it is easy to see that B = ker R(ξ) admits
an alternative description given by

B =

w ∈ F w

n | r(ξ)w = 0 for all r(ξ) ∈ R

. (5)

Thus, given a submodule R ⊆ A1×w, we can define the cor-
responding behavior B(R) by Eq. (5). The following proposition
gives a characterization of the equation module. The complete
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