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a b s t r a c t

We study 2D systems with a continuous and discrete time axis. We embed known results about the
stability and H∞-performance properties of such systems into multiplier theory from robust control. It
is shown that this opens the way for applying recently developed gain-scheduled controller synthesis
techniques in order to solve the H∞-design problem for 2D systems without any conservatism. This is
presented if the discrete-time axis is either one- or two-sided, the latter leading to non-conservative H∞-
synthesis result for infinite string interconnections of identical linear time-invariant systems.
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1. Introduction

Multidimensional or nD systems theory is a rather well-
developed field, with applications to e.g. two-dimensional filtering
in image processing, to analyzing and synthesizing controllers for
repetitive processes or for spatially distributed systems, to name
only a few. The last decades havewitnessed awhole variety of tech-
niques for analyzing the stability and performance properties of
2D or nD system, either by algebraic, functional analytic or opti-
mization techniques. A multitude of classical papers address the
characterization of stability as surveyed e.g. in [1] and devoted
to 2D systems admitting a Roesser- [2,3] or Fornasini–Marchesini
state-space description [4]. Already in this early work the promi-
nent role of the existence of positive definite frequency-dependent
solutions of suitable parameterized Lyapunov equations for exact
stability characterizations has become apparent. The interpreta-
tion in terms of quadratic differential forms in a behavioral setting
has been made transparent by Jan Willems in [5], see also [6–9].

In a similar vein, the solution of the infinite horizon linear
quadratic control problem involves the solution of parameterized
Riccati equations as exposed e.g. in [10]. A lossless characterization
of some bound on the H∞-norm of a 2D system can as well be
achieved through frequency-parameterized Riccati equations that
are related to the bounded real lemma, as brought out in the
context of spatially invariant distributed systems in [11,12]. A
related computational technique based on parameterized linear
matrix inequalities (LMIs) has been recently developed in [13,14],
see also [15].
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In general, the special role of LMIs for the computational
analysis of multidimensional systems and for designing multi-
dimensional filters or controllers is by now well recognized, as
e.g. emphasized for linear repetitive processes in [16]. Based
on Lyapunov or dissipation theory, a large body of literature
is devoted to a wide diversity of questions from filtering and
control with uncertainties, non-linearities or delays. It is certainly
not our intention to survey or summarize previous work in this
direction but, instead, we rather mention the books [17,18] for a
comprehensive overview and many more references.

Even if looking at H∞-synthesis for 2D systems, all these
techniques still involve conservatism since, roughly speaking,
they are based on frequency-independent solutions of frequency
dependent analysis inequalities.

This brings us to the main purpose of the present paper.
In a first part, we emphasize the conceptual simplicity how
tight stability and performance tests emerge by applying classical
frequency-dependent multiplier techniques in robust control. This
is pursued in detail for the particular class of 2D systemsmodeling
linear repetitive processes with a continuous and a discrete time
axis in a Roesser description in Section 2. In a next step we
provide the link of lossless H∞-synthesis for this class of systems
to a recently developed gain-scheduling design algorithm with
dynamic multipliers in [19,20] (Section 3). We conclude the
paper with a novel extension of the design paradigm to two-
sided spatially distributed systems (Section 4), accompanied by a
discussion of variants and extensions (Section 5). Technical proofs
are moved to Appendix.
Notation. We use the notation C≥ := {z ∈ C | Re(z) ≥ 0},R≥ :=

C≥ ∩ R,Z≥ := R≥ ∩ Z,D≥ := {z ∈ C | |z| ≥ 1} and C∞
≥

:=

C≥ ∪ {∞},D∞
≥

:= D≥ ∪ {∞} as well as the analogous versions
for ‘‘>’’, ‘‘<’’ and ‘‘≤’’, respectively. All throughout ∥ ·∥ denotes the
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Euclidean normof vectors or the spectral normofmatrices. Further
RLk×l

∞
(RLk×l

∞
(D=)) is the space of real rational k×lmatriceswithout

poles inC∞
=
(D=) and equippedwith themaximumnorm ∥.∥∞. For

a real rational G let G∗(s) := G(−s)T . If G(s) = D + C(sI − A)−1B,

we write G =


A B
C D


,Gss =


A B
C D


and use (G∗)ss =

−AT CT

−BT DT


. If M = MT

∈ Rk×k and G ∈ RLk×l
∞

is realized with

eig(A)∩C= = ∅, the continuous-time Kalman–Yakubovich–Popov
(KYP) Lemma states that the frequency domain inequality (FDI)
G∗MG ≺ 0 on C∞

=
holds iff there exists some X = XT satisfying

the linear matrix inequality (LMI)

L (X,M,Gss) :=

 I 0
A B
C D

T 0 X 0
X 0 0
0 0 M

 I 0
A B
C D


≺ 0. (1)

Partitions of A induce compatible ones for X without notice.
We use the star product ‘‘⋆’’ and all rules for linear fractional
transformations (LFTs) as in [21, Chapter 10]. Finally, ‘‘•’’ indicates
objects that can be inferred by symmetry or are irrelevant.

2. Analysis of 2D systems

2.1. Stability

With real matrices A ∈ Rn×n, B, C,D ∈ Rm×m we consider the
system

∂tx(t, k)
w(t, k + 1)


=


A B
C D


x(t, k)
w(t, k)


for (t, k) ∈ R≥ × Z≥. (2)

A trajectory is a function col(x, w) : R≥ ×Z≥ → Rn+m which has a
locally square integrable distributional partial derivative ∂tx with
respect to the first variable and satisfies (2).

System (2) is said to be stable if

det(sI − A) det(zI − D) ≠ 0 and

det

A − sI B

C D − zI


≠ 0 for all (s, z) ∈ C≥ × D≥.

(3)

This is the exact algebraic characterization for stability along the
pass as defined in [16] for linear repetitive processes. The relation
of (3) to exponential stability can be found in [22,13] (with a
discussion of the deficiencies of this interpretation in [23], see
also [24]).

By the Schur formula and with

H(s) := D + C(sI − A)−1B as well as δ(z) :=
1
z
,

the third determinant in (3) equals det(A − sI) det(H(s) − zI),
which can be expressed as det(A−sI) det(δ(z)I) det(δ(z)H(s)− I);
hence (3) is equivalent to eig(A) ⊂ C<, det(I − Dδ(z)) ≠ 0 and
det(I − H(s)δ(z)) ≠ 0 for all (s, z) ∈ C≥ × D≥; due to H(∞) = D
and δ(∞) = 0, this is nothing but

eig(A) ⊂ C< and
det(I − H(s)δ(z)) ≠ 0 for all (s, z) ∈ C∞

≥
× D∞

≥
.

(4)

This reformulation clearly exhibits the link of the stability
condition (3) to the structured singular value (SSV) [25]. As
well-known, one can confine the non-singularity condition in
(4) to the boundary C∞

=
of C∞

≥
. (This follows either from a

maximummodulus principle for the SSV [25] or by exploiting that
δ(D∞

≥
) = D≤ is star-shapedwith center zero andusing a homotopy

argument in combination with the continuous dependence of the

eigenvalues of a matrix on its entries.) Thus (4) is equivalent to
eig(A) ⊂ C< and det(I − H(s)δ(z)) ≠ 0 for all (s, z) ∈ C∞

=
× D∞

≥
,

which can in turn be rephrased as

eig(A) ⊂ C< and eig(H(s)) ⊂ D< for all s ∈ C∞

=
. (5)

The second point-wise stability property in discrete time can
alternatively be expressed by requiring, for each s ∈ C∞

=
,

the existence of a positive definite solution Ψ of the Lyapunov
inequality H(s)∗ΨH(s) − Ψ ≺ 0; note that Ψ clearly depends on
s! Hence (5) is equivalent to eig(A) ⊂ C< and the existence of a
function Ψ : C∞

=
→ Cm×m satisfying the FDIs

Ψ (s) ≻ 0 and
H(s)
I

∗ 
Ψ (s) 0
0 −Ψ (s)


H(s)
I


≺ 0 for all s ∈ C∞

=
.

(6)

For such parameter-dependent linear matrix inequalities, it is
finally well-established that it causes no loss of generality to let
Ψ (s) be real rational in s without poles in C∞

=
[26,27]. We can

summarize these observations as follows.

Lemma 1. System (2) is stable iff eig(A) ⊂ C< and there exists a
Ψ ∈ RLm×m

∞
with (6).

In this fashion stability is characterized by a convex feasibility
test over the infinite-dimensional space RLm×m

∞
. Before we

address the construction of an asymptotically exact finite-
dimensional LMI relaxation hierarchy for verifying stability, let us
discuss how our point-of-view seamlessly extends to performance
characterizations.

Remark 2. We emphasize that none of the analysis results in this
paper is new. For example, (5) appears in [28, Lemma6]. If choosing
the simple multiplier Ψ (s) = I and applying the continuous-
time KYP Lemma to turn (6) for H(s)T realized by (AT , CT , BT ,DT )
into an LMI, we arrive at [28, Theorem 2]. All this is closely linked
to insights in many other papers in the literature, which are too
numerous to be cited here.

2.2. Performance

To render the notation more compact, let σ denote the shift
operator σw(t, k) = w(t, k+1) for (t, k) ∈ R≥ ×Z≥ acting on the
second variable of the signalw : R≥ ×Z≥ → Rm. For performance
analysis we now consider the system
∂tx
σw


=


A B1
C1 D11


x
w


+


B2
D12


d,

e =

C2 D21

  x
w


+ D22d

(7)

with a disturbance input d and an output ewhich is interpreted as
an error variable. For d = 0 we obtain a system as in (2) whose
stability is, in view of (5), characterized by

eig(A) ⊂ C< and

eig(C1(sI − A)−1B1 + D11) ⊂ D< for all s ∈ C∞

=
.

(8)

Let (8) be valid and let the disturbance be contained in the
following Hilbert space of finite energy signals: L •

2 = {x : R≥ ×

Z≥ → R•
| ∥x∥2 :=


k∈Z≥


R≥

∥x(t, k)∥2 dt < ∞}; we often
drop • for convenience. Then the output response of (7) with the
initial conditions

x(0, k) = 0 and w(t, 0) = 0 for all k ∈ Z≥, t ∈ R≥
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