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a b s t r a c t

The notion of the most powerful unfalsified model plays a key role in system identification. Since its
introduction in the mid 80s, many methods have been developed for its numerical computation. All
currently existing methods, however, assume that the given data is a complete trajectory of the system.
Motivated by the practical issues of data corruption due to failing sensors, transmission lines, or storage
devices, we study the problem of computing themost powerful unfalsified model from data with missing
values. We do not make assumptions about the nature or pattern of the missing values apart from the
basic one that they are a part of a trajectory of a linear time-invariant system. The identification problem
withmissing data is equivalent to a Hankel structured low-rankmatrix completion problem. Themethod
proposed selects rank deficient complete submatrices of the incomplete Hankel matrix. Under specified
conditions the kernels of the submatrices form a nonminimal kernel representation of the data generating
system. The final step of the algorithm is reduction of the nonminimal kernel representation to aminimal
one. Apart from its practical relevance in identification, missing data is a useful concept in systems and
control. Classic problems, such as simulation, filtering, and tracking control can be viewed asmissing data
estimation problems for a given system. The corresponding identification problemswithmissing data are
‘‘data-driven’’ equivalents of the classical simulation, filtering, and tracking control problems.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Context and aim of the paper

The behavioral approach to systems and control was developed
from ‘‘a need to put a clear and rational foundation under the
problem of obtaining models from time series’’ [1, page 561]. One
of the key ideas that came out from the original work [1–3] of Jan
Willems is the notion of the ‘‘most powerful unfalsified model’’, or
MPUM for short. The MPUM is ‘‘unfalsified’’ in the sense that it is
an exactmodel for the given data and ‘‘most powerful’’ in the sense
that it is the least complicated exact model. Thus, the MPUM is an
optimal exact model for the data.

A candidate model B̂ for the data wd is unfalsified if wd is a
trajectory of B̂. In the behavioral setting this fact is conveniently
written as wd ∈ B̂. (By definition the model is the set of all
valid trajectories.) Restricting to the class of linear time-invariant
models and assuming that the number of the input variables
(which is awell defined quantity, see [1, Section 4]) is a priori fixed,
the complexity of the model can be quantified by its order or by its
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lag. Let Lm be the set of linear time-invariant systems with at most
m inputs. TheMPUM for the datawd in themodel classLm is defined
as

Bmpum(wd)

:= arg min
B̂∈Lm

lag(B̂)  
most powerful

subject to wd ∈ B̂  
unfalsified model

. (MPUM)

Apart from defining the notion of the MPUM, in [2], Jan
Willems developed algorithms that implement themappingwd →

Bmpum(wd). These algorithms motivated the development of the
subspace identificationmethods. The so-called ‘‘deterministic sub-
space identification’’ problem, see [4, Chapter 2] and [5, Chapter 7],
is the problem of computing a state space representation of an ex-
act model from data. Unlike the methods of [2], the subspace iden-
tification methods assume a priori given upper bound of the lag or
the order of the model. If this bound is over specified, a nonmin-
imal representation of Bmpum(wd) is computed. Subsequently, it
is reduced to a minimal one. Thus instead of optimizing over the
model complexity, the subspace methods use model reduction in
order to find the MPUM.

The class of the subspace methods was generalized to approxi-
mate identification in the ARMAX [4,6] and errors-in-variables [7]
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settings, identification in closed-loop [8], identification of dissi-
pative and lossless systems [9,10], and other constrained identifi-
cation problems. The subspace methods are practically successful
and are still developed theoretically, generalized to new problems,
and improvement computationally.

In this paper, we consider the exact (deterministic) identifica-
tion problem in the case of data with missing values. Apart from
the preliminary results [11] by the author, currently there are no
subspace methods that address this problem. We do not make as-
sumptions about the nature or pattern of the missing values apart
from the basic one that they are a part of a valid trajectory of a
linear time-invariant system with a given number of inputs and
bounded lag. Themissing elements can be both inputs and outputs
of the system under some given input/output partitioning of the
variables and they can appear in any pattern in time: periodically,
randomly, or in blocks of consecutive time samples.

1.2. Literature review and contribution

Most of the currently existing literature on identification with
missing data addresses special cases, such as specific patterns of
occurrence of the missing data, or uses heuristics for estimation
of the missing data, such as interpolation methods, followed by
classical identification from the completed data. Three important
special cases and three state-of-the-art methods that solve the
general problem are reviewed next.

Special cases
The following special identification problemswithmissing data

were considered in the literature:

• partial realization problem,
• missing input and output values in a single block, and
• missing values in the output only.

The partial realization problem is an exact identification prob-
lem from data consisting of the first few samples of the impulse
response. This problem can be posed and solved as an extension of
the given samples of the impulse response, i.e., estimation of the
missing output values, after the given ones. Kalman derived an an-
alytical solution [12,13] for this problem. This solution, however,
does not generalize to other patterns of missing data.

Another special identification problem with missing data
considered in the literature [14] is the problem when missing are
wd(t), wd(t+1), . . . , wd(t+lag(B)). In this case, the identification
problem with missing data is equivalent to identification from
two independent data sets: w1

d =

wd(1), . . . , wd(t − 1)


and

w2
d =


wd(t + lag(B) + 1), . . . , wd(T )


, where T is the number of

samples ofwd. This result also does not generalize to other patterns
of missing values.

The special case when the missing data is restricted to the
output variables only can be handled by the classical prediction
error identification methods [15,16]. The predictor is used to
estimate the missing output values from the inputs, the current
guess of the model and the initial conditions.

Optimization-based methods
The general identification problem with missing data can

be approached by choosing a representation of the model and
optimizing the complexity over the model parameters and the
missing values, subject to the constraint that the completed data is
a trajectory of the system. This leads to a nonconvex optimization
problem. Three classes of methods that use this approach are:

• modification of the classical prediction error methods,
• methods developed in the structure low-rank approximation

setting [17–19], and

• convex relaxation methods based on the nuclear norm heuris-
tic.

All these methods are designed for estimation from noisy as well
as missing data.

The approach using the prediction error methods for missing
data estimation in the outputs was recently generalized in [20]
to missing values of both inputs and outputs. Standard nonlinear
local optimizationmethods are used. Thesemethods require initial
values for the optimization variables (model parameters and
missing values) and the results depend on their closeness to a
‘‘good’’ locally optimal solution. Similar in spirit but different in
implementation details [21–23] are the methods developed in the
structure low-rank approximation setting.

An approach that gained popularity lately due to its success in
compressive sensing is relaxation of the problem to a convex one
by using the nuclear norm in lieu of the rank [24]. In [25], system
identificationwithmissing data is handled by (1) completion of the
missing data using the nuclear norm heuristic (this step requires
solution of a convex optimization problem), and (2) identification
of a model parameter from the completed sequence using classical
subspace identification methods. In the context of identification
from noisy data, the optimization problem on step 1 involves a
trade-off between the model complexity and the model accuracy.
This trade-off is set by a user defined hyper-parameter. In the
context of the exact identification problem considered in this
paper, there is no trade-off parameter, see Section 5.1.

Contribution and organization of the paper
Ourmain contribution is a subspace typemethod for exact iden-

tification of a linear time-invariant system from data with miss-
ing values. Compared with the method based on the nuclear norm
heuristic, the subspacemethod uses only linear algebra operations
such as kernel computation and solution of linear systems of equa-
tions, which makes it computationally more efficient.

The subspace algorithm proposed in the paper selects complete
submatrices of the incomplete Hankel matrix constructed from
the data by (1) grouping together the columns of the Hankel
matrix which have missing elements at the same positions and (2)
skipping the missing elements. If the resulting submatrices have
sufficiently many columns, their left kernels carry information
about the most powerful unfalsified model.

Another contribution of the paper is using themissing data esti-
mation methods for solving systems and control related problems,
besides model identification. More specifically, we solve simula-
tion and output tracking control problems by Algorithms 1 and 2,
presented in Section 4. These examples show that missing data es-
timation is a unifying tool for systems and control related prob-
lems.

The paper is organized as follows. In Section 2 we define the
notation being used. Section 3 defines formally the problems
considered:

1. verification when a sequence wd with missing data is a
trajectory of a given linear time-invariant system B, and

2. methods for computing Bmpum(wd) from a sequence wd with
missing values.

The solution to these problems is presented in Sections 4
and 5, respectively. The methods proposed are illustrated on
examples and their advantages and disadvantages are compared.
Conclusions and directions for future work are given in Section 6.

2. Preliminaries

Missing data values are denoted by the symbol NaN (‘‘not a
number’’). The extended set of real numbers Re is the union of the
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