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a b s t r a c t

This paper deals with robust synchronization of directed and undirected multi-agent networks with
uncertain agent dynamics. Given a networkwith identical nominal dynamics, we allow uncertainty in the
form of coprime factor perturbations of the transfer matrix of the agent dynamics. These perturbations
are assumed to be stable and have H∞-norm that is bounded by an a priori given desired tolerance. We
derive state space equations for dynamic observer based protocols that achieve robust synchronization
in the presence of such uncertainty. We obtain an achievable interval, i.e. an interval such that for each
value of the tolerance contained in this interval there exists a robustly synchronizing protocol.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

It has been generally recognized that the work of Jan Willems
on dissipativity, the algebraic Riccati equation and linear matrix
inequalities forms the foundation of the state space approach to
H∞ and robust control theory for linear systems as it developed in
the eighties of the twentieth century. An example of work where
many concepts put forward by Jan Willems fall into place is the
work on optimal robust stabilization by Glover in [1] and Glover
and MacFarlane in [2], see also [3]. In the present paper we will
adopt ideas from [2] to formulate and resolve a control synthesis
problem in the more recent context of robust synchronization
of networked multi-agent systems. In the last decade, extensive
effort has been invested in the theory of distributed control of
networked multi-agent systems. Well-known problems in the
theory of networked systems are the problems of consensus and
synchronization, see [4–7] and [8] or, more recently, [9] and [10]. In
these problems, the goal is to reach a state of agreement on certain
quantities of interest which depend on the states of each agent.
This is to be achieved bymeans of local information exchange only.
A communication protocol that achieves this goal is said to achieve
consensus or synchronization within the network.

Recently, in [11], results on synchronization of linear multi-
agent systems have been extended to accommodate the presence
of uncertainty in the agent dynamics. While the agents in the
network have identical nominal dynamics, the actual dynamics of
each agent is uncertain in the sense that the transfer matrix of
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each agent is a perturbation of the common nominal dynamics.
In [11], additively perturbed agent dynamics was considered,
and conditions for the existence of dynamic protocols that
achieve robust synchronization and methods to obtain such
protocols were established. In the current paper, we extend
these results to directed and undirected networked multi-agent
systemswith coprime factor perturbed agent dynamics.We provide
explicit equations for dynamic protocols that achieve robust
synchronization for this kind of perturbations.

The outline of this paper is as follows. In Sections 2 and 3
we introduce some notation and review some basic facts. Next,
in Section 4, the theory of synchronization of unperturbed linear
multi-agent systems is briefly reviewed. Then, in Section 5 we
provide a formulation of the problem of robust synchronization of
coprime factor perturbed multi-agent systems. Finally in Section 6
we formulate the main results of this paper.

2. Preliminaries

In this paper, we denote the set of all proper and stable real
rational matrices by RH∞. If G ∈ RH∞, then ∥G∥∞ denotes its
H∞-norm, ∥G∥∞ = supRe(λ)≥0∥G(λ)∥. For a given square complex
matrix M we denote its spectral radius by ρ(M). A square matrix
M is called Hurwitz if all its eigenvalues have strictly negative real
parts.

Let R denote the field of real numbers, Rn the n-dimensional
Euclidean space and Rn×n the space of n × n real matrices. Denote
the field of complex numbers by C. We denote by Ip the identity
matrix of dimension p and by I any identity matrix of appropriate
dimension. The Kronecker product of the matrices A ∈ Rm×n and
B ∈ Rp×q is denoted by A ⊗ B.
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This paperwill use ideas and results fromH∞-control. TheH∞-
control problemdates back towork byG. Zames in [12] and the first
full solution in a state space setting was provided in [13]. A result
that is instrumental in H∞-control is the bounded real lemma, see
also [3], Section 12.6.2. In this paper we will use a version of this
lemma adapted to our purposes. The proof is omitted.

Lemma 1. Consider the system ẋ = Ax + Bu, y = Cx + Du with
transfer matrix G(s) = C(sI − A)−1B + D. Assume DTD = I and A is
Hurwitz. Let τ > 1. The H∞-norm ∥G∥∞ of the transfer matrix from
u to y satisfies ∥G∥∞ < τ if there exists ϵ > 0 and a real symmetric
solution P to the Riccati inequality

ATP + PA + CTC +
1

τ 2 − 1
(PB + CTD)(BTP + DTC)

≤ −ϵ(PB + CTD)(BTP + DTC). (1)

3. Graphs

In this paper, we consider networks whose interaction topolo-
gies are represented by directed or undirected graphs, see [14,15].
A directed graph consists of a pair G = (V, E), where V =

{1, 2, . . . , p} is the set of nodes, and where E ⊂ V × V is the set of
edges. Given two nodes i, j ∈ V with i ≠ j, then an edge from i to j
is represented by the pair (i, j) ∈ E . A graphwith the property that
(i, j) ∈ E implies (j, i) ∈ E is called undirected. The neighboring
set Ni of vertex i is defined as Ni := {j ∈ V|(i, j) ∈ E}. For a graph
G, its adjacency matrix A is given by A = (aij), with aii = 0 and
aij = 1 if (j, i) ∈ E , and aij = 0 otherwise. The Laplacian matrix of
G is defined as L = (lij), where we have lii =


j≠i aij, lij = −aij,

i ≠ j. Since all row-sums of L are zero, i.e.


j lij = 0 ∀i, zero is an
eigenvalue of Lwith eigenvector 1 := (1, . . . , 1)T . Consequently, L
has at most rank p − 1.

In the case that G is undirected, the Laplacian L is a positive
semi-definite real symmetric matrix. The Laplacian matrix of an
undirected graph has rank p − 1 if and only if the graph is
connected. Under this condition, the zero eigenvalue of L has
multiplicity one. The p−1 nonzero eigenvalues of L can be ordered
increasingly as 0 < λ2 ≤ λ3 ≤ · · · ≤ λp. Furthermore, L can be
diagonalized by an orthogonal transformationU that brings it to the
form Λ := UT LU = diag(0, λ2, . . . , λp), which is denoted by Λ.

For a general directed graph G, L is not necessarily symmetric,
and the eigenvalues of L are not guaranteed to be real. In this case,
still, all eigenvalues of L have nonnegative real part. A directed
graph contains a spanning tree if and only if its Laplacian has
rank p − 1. In this case, the set of nonzero eigenvalues of L is
denoted in arbitrary order by {λ2, λ3, . . . , λp}, and L can be brought
to upper triangular form by a complex unitary transformation U:
U∗LU = Λu, where Λu is a complex upper triangular matrix with
0, λ2, . . . , λp on the diagonal.

4. Multi-agent systems

In this section, the problem of synchronization of multi-agent
systems is briefly reviewed.We considermulti-agent systemswith
p agents, where the communication topology of the system is
represented by a directed or undirected graph G with Laplacian
matrix L. For each agent i of the network, the nominal agent
dynamics is given by one and the same finite-dimensional linear
time-invariant system

ẋi = Axi + Bui, yi = Cxi. (2)

For each i, the state xi takes its values in Rn, and the input signal
ui and output signal yi take values in Rm and Rq, respectively. It is

a standing assumption in this paper that (A, B) is stabilizable and
(C, A) is detectable.

Following [10,11], these agents are then interconnected using
an observer-based dynamic protocol of the form

ẇi = Awi + B

j∈Ni

(ui − uj) + G

j∈Ni


(yi − yj) − Cwi


,

ui = Fwi

(3)

for i = 1, 2, . . . , p. The structure of this protocol is as follows.
Each controller is able to observe the disagreement output signal

j∈Ni
(yi − yj) and the relative input


j∈Ni

(ui − uj) of its
corresponding agent. The differential equation in (3) acts as an
observer for the relative state


j∈Ni

(xi−xj) of agent i. The protocol
state wi is an estimate of this quantity. It is easily verified that the
error ei := wi −


j∈Ni

(xi − xj) has error dynamics ėi = (A−GC)ei,
which is asymptotically stable if A − GC is Hurwitz. This estimate
is then fed back to the agent by means of a static feedback.

By interconnecting the agents (2) using the above protocol,
we obtain the closed-loop dynamics of the entire network.
Denote x = col(x1, x2, . . . , xp), u = col(u1, u2, . . . , up), y =

col(y1, y2, . . . , yp), and w = col(w1, w2, . . . , wp). The network
dynamics is now

ẋ
ẇ


=


I ⊗ A I ⊗ BF
L ⊗ GC I ⊗ (A − GC) + L ⊗ BF


x
w


. (4)

Next, we state the prevalent definition of synchronization of such
a network.

Definition 2. The network with agent dynamics (2) is said to be
synchronized by protocol (3) if for all i, j = 1, 2, . . . , p we have
that xi(t) − xj(t) → 0 and wi(t) − wj(t) → 0 as t → ∞.

In [11], it is shown that synchronization of the network with
agent dynamics (2) by protocol (3) is equivalent to the stabilization
of a single linear system by each controller from a given set of p−1
controllers. We will use a similar argument in the next section,
where we examine the synchronizability of multi-agent system in
which the agent dynamics is a coprime factor perturbation of the
nominal agent dynamics.

5. Robust synchronization

While the nominal agent dynamics is still given by the
unperturbed dynamics (2), we now allow uncertainty in the form
of coprime factor perturbations of the nominal agent dynamics.
In [2], this paradigm formodel uncertainty was used in the context
of optimal robust stabilization, see also [3]. The agents have
identical nominal transfer matrices given by G(s) = C(sI − A)−1B.
It is well known that there exists a coprime factorization of G of the
form G = M−1N with M,N ∈ RH∞ such that NN∗

+ MM∗
= I ,

where N∗(s) := NT (−s), see e.g. [2,3]. Such a factorization is called
a normalized coprime factorization over RH∞. Such factorization
can be obtained by means of the algebraic Riccati equation

AQ + QAT
− QCTCQ + BBT

= 0. (5)

By detectability it has a unique real symmetric solution such that
A−QCTC is Hurwitz. ThismatrixQ is called the stabilizing solution
of (5). A normalized coprime factorization G = M−1N is then
obtained by takingM(s) := I−C(sI−A+QCTC)−1QCT andN(s) :=

C(sI − A + QCTC)−1B. In this paper we consider the situation that
the transfermatrices of the agents are coprime factor perturbations
of the nominal transfer matrix, i.e. the transfer matrix G = M−1N
of agent i is perturbed to

G(∆i
M ∆i

N ) := (M + ∆i
M)−1(N + ∆i

N),
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