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a b s t r a c t

Distributed averaging is one of the simplest and most widely studied network dynamics. Its applications
range from cooperative inference in sensor networks, to robot formation, to opinion dynamics. A number
of fundamental results and examples scattered through the literature are gathered here and some original
approaches and generalizations are presented, emphasizing the deep interplay between the network
interconnection structure and the emergent global behavior.
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1. Introduction

One of the core concepts in the behavioral approach to systems
and control developedby JanWillems in the ‘80s is that of intercon-
nection [1]. Encompassing the traditional notion of feedback inter-
connection onwhich classical input/output control theory is based,
the behavioral approach allows for defining interconnections of
systems at a more primitive level, as intersections of solution sets
of the evolution equations, without the need for specific flow dia-
grams. As Jan used to repeat, what is an input andwhat is an output
is a matter of the application. This idea of going beyond the classi-
cal input/output formalism proved fruitful in applications, e.g., in
coding theory, where Willems’ study of minimal state space real-
izations [2] laid the foundations of trellis representationswhich are
the basic tool for the design of efficient decoding algorithms.

More recently, the study of network dynamics is showing deep
cultural analogies with the ansatz of the behavioral approach. Net-
work dynamics entail a large number of (relatively) simple systems
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coupled together along the architecture of a graph. The overall dy-
namical system can thus be seen as the interconnection of these
atomic devices. It does not make much sense to classify a priori
interconnection signals as input or outputs, rather they are vari-
ables coupling the systems, possibly sensor measurements, state
positions, epidemic states, and it is often impossible to say who
is influenced by whom. The emergence of global behaviors such
as synchronization, information fusion, polarization, and diffusion
is one of the distinctive features of these complex interconnected
systems. Such global behaviors can in fact be seen as the result of
the local interactions and of the interconnection graph structure.

This paper focuses on a particularly simple and well studied
class of network dynamics: distributed averaging systems [3,4].
These are linear network dynamics exhibiting many interesting
collective behaviors, such as synchronization and transition phe-
nomena. Their applications range from inferential sensor network
algorithms [5], to network vehicle formation [6], to models for
opinion dynamics [7]. Most of the behavioral approach developed
by Janwas in fact focused on linear systems: he used to say that lin-
ear systems are sufficiently rich from a theoretical viewpoint and
yet containing a huge variety of applications. Keeping models as
simple as possible was central in Jan’s approach to science.

Using classical results from the Perron–Frobenius theory of
non-negative matrices, we first present an asymptotic analysis of
the linear averaging dynamics on arbitrary interconnection graphs.
As expected, the graph topology plays a crucial role in shaping the
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emergent global behavior. While it is well known that all states
reach an asymptotic consensus on connected graphs, Theorem 2
of Section 2 analyzes the case of a general graph and shows
that the asymptotic state of every agent in the network turns
out to be a convex combination of the consensus reached by the
sink connected components (i.e., components with no outgoing
links). Theweights of such convex combination have several useful
interpretations. They can be seen as hitting probabilities of the dual
Markov chain generated by the same averaging matrix or, when
the graph is undirected, as voltages of an electrical circuit with
suitable boundary conditions on the nodes belonging to the sink
components, as explained in Section 3. While analogous electrical
interpretations are well known in Markov chain theory [8,9],
they have received relatively minor attention in the distributed
averaging literature, with a few exceptions. In particular, to
our knowledge, Theorem 3 has not appeared elsewhere in this
generality.

A relevant case in the applications is when the sink components
all consist of single nodes – called stubborn nodes – that never
change their state, e.g., playing the role of opinion leaders in
social networks, or anchor nodes in robot formation control. The
final part of the paper is dedicated to a deeper understanding of
how the asymptotic state is distributed within the network in the
presence of such stubborn nodes. It turns out that – depending
on the stubborn nodes’ centrality and the graph connectivity –
quite different phenomena can emerge ranging from polarized
to homogeneous equilibrium configurations [10]. In the polarized
case, nodes tend to cluster in subfamilies and converge to values
very close to that of a particular stubborn agent, whereas in the
homogeneous regime most of the nodes tend to get close to
a consensus on a value which is a convex combination of the
stubborn node values. In Section 4, we present these phenomena
through an examplewhere the transition between the two regimes
can be analyzed in detail. We then recall more general results
appeared in the literature.

We gather here some notational conventions. The transpose of
A is denoted by A′; 1 is the all-1 vector; 1A is the vector with all
entries equal to 0 except for thosewhose label is inA that are equal
to 1. The asymptotic notation a ≪ b and a ∼ bmeans lim a/b = 0
and lim a/b = 1, respectively.

2. Averaging dynamics on general graphs

Let G = (V, E,W ) be a directed weighted graph representing
the network, where V = {1, . . . , n} is the set of nodes, E ⊆ V ×V
is the set of links, and W ∈ Rn×n is a matrix of nonnegative link
weights such that Wij > 0 if and only if (i, j) ∈ E , with positive
diagonal elements of W corresponding to self-loops. We refer to
the graph G as: connected if W is irreducible;2 undirected if W is
symmetric; balanced if W1 = W ′1; unweighted if Wij ∈ {0, 1} for
all i, j ∈ V . We denote the out-degree vector by w = W1 and
assume3thatwi > 0 for all nodes i. We then introduce thematrices

D = diag (w), P = D−1W , L = D − W . (1)

Observe that thematrices P and−L are respectively row-stochastic
andMetzler. Also, P ′w = w and L′1 = 0 if and only ifG is balanced.
Moreover, G being undirected is equivalent to the detailed balance
wiPij = wjPji for i, j ∈ V , a property that is referred to as

2 Note that this convention deviates from the one adopted by some authors who
refer to G as strongly connected ifW is irreducible and simply connected ifW +W ′

is irreducible.
3 This assumption implies no loss of generality since one can add a self-loop with

Wii > 0 to nodes iwithwi = 0withoutmodifying connectivity and other properties
of G.

reversibility of P (with respect tow). The matrix L is known as the
graph Laplacian.

One of the most popular network dynamics can be seen as the
interconnection of local averaging systems, i.e.,multi-input/single-
state dynamics placed at the nodes i ∈ V and governed by the
linear updates xi(t + 1) = αxi(t) + (1 − α)


j Pijuj(t). Here,

α ∈ [0, 1] is an inertia parameter. By putting uj(t) = xj(t) one
obtains the interconnected system

xi(t + 1) = αxi(t)+ (1 − α)


j

Pijxj(t), (2)

for i ∈ V . In (2), the sum index j runs in principle over the whole
node set V , but is in fact restricted to the out-neighborhood Ni :=

{j : Wij > 0} of node i in G. By assembling all the node states in a
column vector x(t) ∈ Rn, (2) can be compactly rewritten as
x(t + 1) = Pαx(t), (3)
where Pα = αI + (1 − α)P . Hence, the state vector x(t) of the
distributed averaging dynamics (3) evolves as x(t) = P t

αx(0), so
that its asymptotic behavior is dictated by the eigen-structure of
Pα . Being a stochastic matrix, P is non-expansive in the ∥ · ∥∞

norm, so that its spectrum is contained in the unitary disk centered
in 0. Hence, for 0 ≤ α ≤ 1, the matrix Pα has 1 as eigenvalue
(corresponding to right eigenvector 1) and its whole spectrum
is contained in the closed disk of diameter coinciding with the
segment joining the points −1 + 2α and 1 in the complex plane.
Finer properties of the spectrum of Pα are closely related to the
geometrical properties of the graph G as summarized below.

Firstwe consider the casewhen the graphG is connected. In this
case, it is a standard result of the Perron–Frobenius theory that P t

α

converges to a matrix 1π ′ where π can be uniquely characterized
as the left eigenvector π ′

= π ′P such that 1′π = 1. Connectivity
of G implies that all the entries of π – which is referred to as
the centrality vector – are strictly positive. For a balanced graph,
π is proportional to the degree vector, namely, π = w/(1′w).
For general, unbalanced, connected graphs such simple expression
does not hold true, while one can express the entries πi in terms of
infinite sums. For α ∈ [0, 1), let themixing time of Pα be

τα := inf

t ≥ 0 : max

i∈V


j

|(P t
α)ij − πj| ≤

1
2e


.

The mixing time is a popular index to study the speed of
convergence of P t

α . In certain cases it can be estimated from
knowledge of the second largest eigenvalue of Pα or coupling
techniques. E.g., for the unweighted d-dimensional toroidal grid,
one has τα ∼ Cdn2/d where Cd is a constant depending on the
dimension d but not on the graph size n. For general large-scale
graphs whose spectrum analysis is unfeasible and for which no
effective couplings are known, it proves more convenient to relate
the mixing time to the graph conductance

Φ := min
∅≠U(V


i∈U


j∈V\U

πiPij
i∈U

πi ·


j∈V\U

πj
,

that is a measure of the lack of bottlenecks in the graph. Results
in [11, Section 4.3] imply that

1 − 2/e
Φ

≤ τ1/2 ≤
1
Φ2

log
e2

π∗

, (4)

where π∗ = mini∈V πi. By combining the bounds above with
estimates of the conductance, it can be shown, e.g., that the
Erdos–Renyi randomgraphs in the connected regime4exhibit, with

4 They are constructed by considering n nodes randomly putting a link between
any pair of them independently with probability p = c log n/n for c > 1.
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