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a b s t r a c t

We use one-variable Loewner techniques to compute polynomial-parametric models for MIMO systems
from vector-exponential data gathered at various points in the parameter space. Instrumental in our
approach are the connections between vector-exponential modelling via bilinear differential forms and
the Loewner framework.
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1. Introduction

Parametric system identification arises in those areas where
system dynamics depends on one or more parameters, e.g. vary-
ing geometric or material properties. One approach for its solu-
tion is that of [1,2], based on two-variable rational interpolation
techniques and a Loewner matrix associated with the data. In the
single-input, single-output case, this approach produces a transfer-
function or generalized state-space model depending on one pa-
rameter in a higher-order polynomial way.

In this paper we use one-variable Loewner techniques to com-
pute input-state-output (i/s/o) polynomial-parametric models on
the basis of MIMO vector-exponential trajectories produced by a
system at various points in the parameter space. Instrumental in
our approach are the connections established in [3,4] between
vector-exponential modelling via bilinear differential forms and
the Loewner framework. The basic tool in this work is the Loewner
matrix and its rank-revealing factorizations, from which a set of
state trajectories is computed in a straightforward way. Different

DOI of original article: http://dx.doi.org/10.1016/j.sysconle.2016.02.014.
✩ This article is a reprint of a previously published article. For citation purposes,

please use the original publication details [Systems and Control Letters, 92 (2016),
pp. 14–19].
∗ Corresponding author.

E-mail addresses: pr3@ecs.soton.ac.uk (P. Rapisarda), aca@rice.edu
(A.C. Antoulas).

factorizations correspond to different state trajectories: we show
that by suitably factorizing the Loewner matrix one can compute
also structured polynomial-parametric i/s/o models, and we apply
this to the case of passive systems.

A few remarks are in order to define the scope of our results.
Firstly, no assumptions are made on the parametric dependence
of the underlying system, except that at each point in the
parameter space where data has been collected the system can
be described by a set of linear, constant-coefficient differential
equations. Secondly, our choice of model class as that consisting
of i/s/o linear, time-invariant models that depend polynomially on
a parameter is dictated by purely pragmatic reasons, and does not
reflect any intrinsic belief in the nature of the actual dependence
on the parameter. Lacking any special insight in the physics of
the system it is not reasonable to assume a priori any specific
functional dependency on the parameter; moreover, if such
detailed physical knowledge is available, there are more suitable
approaches than a representation-free one. Finally, it is well-
known (see [5,6]) that functional dependency is not preserved
across different representations: for example, an i/o description
depending polynomially on a parameter in general does not
correspond to an i/s/o polynomially-parametric representation,
and vice versa. Our choice of polynomially-dependent parametric
i/s/o models is thus motivated purely by practical reasons, namely
to identify a ‘‘simple’’ unfalsified (in the sense of [7]) model for the
data.

The paper is organized as follows: in Section 2 we state the
problem, and in Section 3 we state the assumptions standing in
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the rest of the paper. Section 4 contains the main results and is
divided in five subsections, dealing with various aspects of our
approach. In Section 5 we apply our results to the parametric
identification of passive systems. In the last section of this paper
we discuss our results and their limitations, together with some
research directions currently being pursued.

We will be using extensively notions from behavioural sys-
tem theory, bilinear/quadratic differential forms and the Loewner
framework; for a thorough exposition we refer to [8–10], respec-
tively.

Notation

The space of n dimensional real (complex) vectors is denoted
by Rn (respectively Cn), and that of m × n real matrices by Rm×n.
R•×m denotes the space of real matrices with m columns and an
unspecified finite number of rows. Given matrices A, B ∈ R•×m,
col(A, B) denotes the matrix obtained by stacking A over B. The
ring of polynomials with real coefficients in the indeterminate s
is denoted by R[s]; the ring of two-variable polynomials with real
coefficients in the indeterminates ζ and η is denoted by R[ζ , η].
Rr×q

[s] denotes the set of all r × q matrices with entries in s, and
Rn×m

[ζ , η] that of n × m polynomial matrices in ζ and η. The set
of rational m × nmatrices is denoted by Rm×n(s).

The set of infinitely differentiable functions from R to Rq

is denoted by C∞(R, Rq). D(R, Rq) is the subset of C∞(R, Rq)
consisting of compact support functions. Given λ ∈ C, we denote
by eλ· the exponential function whose value at t is eλt .

2. Problem statement

We assume that at point p in the parameter space the generat-
ing system is controllable, represented in observable image form as

w = Mp


d
dt


ℓ, (1)

where Mp ∈ Rw×m
[s]; we also assume that w =


u
y


with u input

and y output variables. The input–output partition of the external
variables corresponds to a partition

Mp(s) =:


Up(s)
Yp(s)


, (2)

where Up ∈ Rm×m
[s] is nonsingular, and Yp ∈ Rp×m

[s].
The data are vector-exponential trajectories at various frequen-

cies and values of the parameter p, namely

wpi,λi,j(t) = wpi,λi,je
λi,jt , i = 1, . . . ,N ′, j = 1, . . . ,N (3)

where λi,j ∈ C and wpi,λi,j ∈ Cw, i = 1, . . . ,N ′, j = 1, . . . ,N . Since
(1) is observable, for every wpi,λi,j corresponding to the external
trajectory wpi,λi,j(·) there exists a unique vector spi,λi,j ∈ Cm such
that

wpi,λi,j = Mpi(λi,j)spi,λi,j . (4)

Under some assumptions stated in the next section, we want to
compute from the data (3) a parametric state-space model

d
dt

x = A(p)x + B(p)u

y = C(p)x + D(p)u, (5)

where A(p) ∈ Rn×n
[p], B(p) ∈ Rn×m

[p], C(p) ∈ Rn×p
[p] and

D(p) ∈ Rm×m
[p], with the property that (A(pi), B(pi), C(pi),D(pi))

defines an unfalsified state-space model for the data (3); that is, for
all i = 1, . . . ,N ′ and k = 1, . . . ,N there exists a state trajectory

x = xi,k satisfying (4) with col(u, y) = wpi,λi,k . Such a model (4)
will be called an unfalsified parametric i/s/o model for the data (3).
A refinement of such problem consists in requiring also that the
transfer function C(p)(sIn −A(p))−1B(p)+D(p) is positive-real for
all values of p.

In the following we use also a kernel representation of (1):

Rp


d
dt


w = 0, (6)

where Rp ∈ Rp×w
[s] represents the dynamics at the point p in the

parameter space. The i/o partition (2) is reflected in the following
partition of R:

Rp(s) =:

Qp(s) −Pp(s)


, (7)

where Pp ∈ Rp×p
[s] is nonsingular, and Qp ∈ Rp×m

[s].

3. Assumptions

The standing assumptions in the rest of this paper are the
following:
1. For each pi, i = 1, . . . ,N ′, the first m components of the external

variable w are input variables;
2. The transfer function corresponding to each such i/o partition

is proper;
3. For each pi, i = 1, . . . ,N ′, the McMillan degree of (1) is n.
With reference to (2) and (7), and using standard behavioural
system theory, it is straightforward to verify that assumptions
(1)–(3) are equivalent with
1′. For i = 1, . . . ,N ′, Upi(s) and Ppi(s) are nonsingular;
2′. Ypi(s)Upi(s)

−1
= Ppi(s)

−1Qpi(s) is proper, i = 1, . . . ,N ′;
3′. deg


Upi(s)


= deg


Ppi(s)


= n for i = 1, . . . ,N ′.

We moreover assume that
4. For i = 1, . . . ,N ′, the data (3) is sufficiently informative, in the

sense that an unfalsified state-space model for the data at point
pi
d
dt

x = Apix + Bpiu

y = Cpix + Dpiu, (8)

can be computed from it.
Several different conditions on (3) guarantee that assumption (4)
is satisfied; for example, it can be shown that if the following
conditions are satisfied:
4′. N > n(n + p + m);
4′′. for i = 1, . . . ,N ′, λi,j ≠ λi,k for j ≠ k,
then a unique model can be computed.

4. Parametric state-space modelling

4.1. Overview

Our approach is based on the following idea: we first compute
from the primal data (3) a set of dual data, i.e. of vector-exponential
trajectories generated by the dual system at the value pi of the
parameter; crucial in such first step is the concept ofmirroring.

Subsequently, for each value of the parameter pi we generate
from the primal and dual data a Loewner matrix Lpi ∈ CN×N ,
which we proceed to factorize in a rank-revealing way. From
such factorization state trajectories corresponding to the external
trajectories (3) for fixed i are readily obtained. Using such state
trajectories and the primal data, a model (4) is obtained for p = pi
solving a system of linear equations.

We repeat this procedure for i = 1, . . . ,N ′. Finally, we
compute a parametric state model by combining the pointwise
state models thus obtained using standard scalar polynomial-
interpolation techniques.
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