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a b s t r a c t

We consider a class of Voronoi-like partitioning problems, in which a multi-agent network seeks to
subdivide a subset of an affine space into a finite number of cells in the presence of sensing constraints.
The cell of this subdivision that is assigned to a particular agent consists exclusively of points that
can be sensed by this agent and are closer to it than to any other agent that can also sense them.
The proximity between an agent and an arbitrary point is measured in terms of a non-homogeneous
quadratic (generalized) distance function, which does not, in general, enjoy the triangle inequality and
the symmetry property. One of the consequences of this fact is that the structure of the sublevel sets of
the utilized proximity metric does not conform with that of the sensing region of an agent. Due to this
mismatch, it is possible that a point may be assigned to an agent which is different from its ‘‘nearest’’
agent simply because the nearest agent cannot sense this point, unless special care is taken. We propose
a distributed partitioning algorithm that enables each agent to compute its own cell independently from
the other agents when the only information available to it is the positions and the velocities of the agents
that lie inside its sensing region. The algorithm is based on an iterative process that adjusts the size of
the sensing region of each agent until the associated cell of the latter corresponds to the intersection of
its sensing region with the cell that would have been assigned to it in the absence of sensing constraints.
The correctness of the proposed distributed algorithm, which successfully handles the aforementioned
issues, is studied in detail.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this work, we consider a spatial partitioning problem for
a multi-agent network in the presence of sensing constraints.
The region to be partitioned is a subset of an affine subspace
which is comprised of points that can be reached by the agents
with zero terminal velocity (terminal manifold of the multi-agent
network). It is assumed that each agent can measure its distance
froman arbitrary point in the terminalmanifold bymeans of a non-
homogeneous quadratic (generalized) distance function, provided
this point lies in its sensing region. In addition, it is assumed
that each agent can only sense the velocities and the positions
of its teammates that lie within its sensing region. The solution
to this partitioning problem corresponds to a collection of non-
overlapping cells that are assigned to different agents. Specifically,
the cell assigned to a particular agent will consist exclusively of
points that are (1) within the agent’s sensing region and (2) closer,
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in terms of the utilized proximity metric, to this agent than to any
other agent from the same network that can also sense them.

Literature Review: Partitioning problems are becoming very rel-
evant to several classes of sensing and control problems involving
networks of autonomous agents andmobile sensors [1–10]. Specif-
ically, partitioning algorithms can provide such networks, which
are typically assignedwithmultiple and spatially distributed tasks,
with the necessary means to ‘‘optimize the quality of service’’ they
provide, according to the authors of [1,11].

In our previous work, we have proposed a new class of
partitioning problems in which the proximity metric corresponds
to the optimal value function of a quadratic optimal control
problem [12,13]. This class of spatial partitions corresponds to
a special class of generalized Voronoi diagrams (see [14,15] and
references therein), given that the utilized proximity metric in
[12,13] is different than those used in standard Voronoi diagram
problems. To address this class of problems, we have proposed
algorithms which are decentralized in the sense that they enable
each agent to compute its own cell independently from its
teammates without utilizing, for instance, a common spatial grid.
The main caveat of the approach proposed in [12,13] is that its
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decentralized implementation hinges upon the assumption that
each agent knows the positions and the velocities of all the other
agents. Actually, it suffices to assume that each agent knows the
positions and the velocities of its neighbors in the topology of the
Voronoi-like partition. However, in the latter case, the required
information about the neighboring relations among the agents
cannot be available to an agent unless the latter knows the whole
solution to the partitioning problem a priori. In the presence of
sensing constraints, such an assumption is practically impossible
to be verified.

Main Contributions and Challenges: Themain contribution of this
work is the presentation of a distributed algorithm for a class of
partitioning problems involving multi-agent networks, which, in
contrast with some of our previous results in this class of problems
[12,13], accounts explicitly for the presence of sensing constraints.
In the proposed framework, each agent is assumed to know only
the positions and the velocities of the agents that lie in its sensing
region. Following the approach that has been proposed in the
literature for the distributed computation of standard Voronoi
diagrams [16,1] (in which the proximity metric is the Euclidean
distance), we will relax the sensing constraints by allowing each
agent to adjust the size of its sensing region. The objective here
is twofold. First, the sensing region of an agent should be large
enough to allow it to infer the positions and velocities of those of its
teammates in the network that are necessary for the independent
computation of its own cell. Second, the computed cell should
be a consistent truncation of the cell that would be assigned to it
in the absence of sensing constraints. Here, the term ‘‘consistent
truncation’’ describes the situation in which the intersection of
the sensing region of an agent with its cell in the absence of
sensing constraints coincides with its assigned cell in the presence
of sensing constraints.

In the problemwe consider herein, the distributed computation
of the Voronoi-like partition poses new challenges, which cannot
be tackled by means of the available techniques used for the dis-
tributed computation of standard Voronoi partitions [16,1,17,7].
This is mainly because the proximity metric utilized here, which is
a non-homogeneous quadratic function, does not enjoy ‘‘nice prop-
erties’’ such as the triangle inequality and the symmetry property
in contradistinction with the Euclidean distance. A consequence of
this fact is that the structure of the sub-level sets of the proximity
metric of an agent, which are ellipsoids centered at a point that is
different, in general, from the agent’s location, does not match that
of its sensing region, which is a ball centered at the agent’s loca-
tion. Because of this mismatch, it is possible that points may be as-
signed to an agent that is different from their nearest one, in terms
of the utilized proximity metric, because the latter agent cannot
sense them, unless special care is taken. The proposed algorithm,
whose correctness is analyzed in detail, addresses successfully all
the aforementioned issues.

Organization of the paper: The rest of the paper is organized
as follows. Section 2 presents the formulation of the partitioning
problem in the presence of sensing constraints. A distributed
partitioning algorithm along with a detailed analysis of its
correctness are presented in Section 3. Section 4 presents
numerical simulations, and finally, Section 5 concludes the paper
with a summary of remarks.

2. Formulation and analysis of the partitioning problem in the
presence of sensing constraints

2.1. Notation

We denote by Rm the set of m-dimensional real vectors. We
denote by R≥0 and Z≥0, respectively, the sets of non-negative real
numbers and integers. We write |α| to denote the 2-norm of a

vector α ∈ Rm. We write P = PT
≻ 0 to denote the fact that

a square (symmetric) matrix is positive definite. Furthermore, we
denote by λmin(P) and λmax(P) the minimum and the maximum
eigenvalues of a symmetric matrix P, respectively. Similarly, the
minimum and the maximum singular values of a matrix A are
denoted by σmin(A) and σmax(A), respectively. In addition, bd(S)
and int(S) denote, respectively, the boundary and the interior of
a set S ⊂ Rm. The relative interior of a set S will be denoted by
rint(S). The closed ball of radius ϱ around a point x ∈ Rm will be
denoted by B(x; ϱ). Finally, L2([0, τ ], Rm) denotes the space of
square integrable functions g : [0, τ ] → Rm, for a given τ > 0.

2.2. Problem setup

Weare given a network of n agentswhich are initially located at
n distinct points, x̄i ∈ R2, with prescribed initial velocities, v̄i ∈ R2,
where i ∈ In := {1, . . . , n}. We denote by X := {x̄i ∈ R2, i ∈ In}

and V := {v̄i ∈ R2, i ∈ In}, respectively, the sets of initial
positions and initial velocities of all the agents. The motion of the
ith agent from the network, where i ∈ In, is described by the
following set of equations:

żi = A(t)zi + B(t)ui(t), zi(0) = z̄i, (1)

where zi := [xiT, viT]T ∈ R4 and z̄i := [x̄Ti , v̄T
i ]

T
∈ R4 denote,

respectively the state of the ith vehicle (concatenation of position
and velocity vectors) at time t and t = 0; the set of initial states
of all the agents is denoted by Z := {z̄i ∈ R4, i ∈ In}. Moreover,
ui(·) ∈ L2([0, τ ], R2) denotes the control input of the ith agent.
In addition, A(·) and B(·) are continuous matrix-valued functions
of time and can be defined, for instance, as in [13], in which case,
A(t) :=

 02 I2
−K(t) −C(t)


, B(t) :=

 02
H(t)


, where I2 and 02 are the

identity and the zero 2×2matrices, respectively, andK(·), C(·) and
H(·) are continuous matrix-valued functions of time; in addition,
H(t) is a non-singular 2 × 2 matrix for all t ≥ 0. Finally, the
terminal manifold, which is denoted by X0, is taken to be a two-
dimensional affine subspace embedded in R4, which consists of all
the positions that can be reachedwith a zero terminal velocity, that
is, X0 := {z = [xT, vT

]
T

∈ R4
: v = 0}.

Following [13], we will be measuring the distance between the
ith agent and an arbitrary point z(x) := [xT, 0]T in the terminal
manifold X0 by means of the minimum control effort required
for the former to reach the latter. In particular, let τ > 0 and
let U(x; τ , z̄i) := {ui(·) ∈ L2([0, τ ], R2) : zi(τ ; z̄i, ui(·)) =

[xT, 0]T} where zi(·; z̄i, ui(·)) denotes the solution to the initial
value problem given in (1) for a given input ui(·). It can be shown
that if U(x; τ , z̄i) ≠ ∅, which is always true when the system (1)
is controllable at t = τ , then the minimum control effort required
to steer the system (1) from z̄i to z(x) := [xT, 0]T at time t = τ ,
which is denoted by J◦(x; τ , z̄i), where

J◦(x; τ , z̄i) := min
ui(·)∈U(x;τ ,z̄i)

 τ

0

1
2 |ui(t)|2dt,

satisfies the following equation:

J◦(x; τ , z̄i) = ⟨x − q(τ , z̄i), P(τ )(x − q(τ , z̄i))⟩ + δ(τ , z̄i), (2)

where P(τ ) is a positive definite 2 × 2 matrix, that is, P(τ ) =

PT(τ ) ≻ 0, q(τ , z̄i) is a two-dimensional column vector and
δ(τ , z̄i) is a non-negative number. Note that the matrix P(τ ) does
not depend on any parameter besides the final time τ and is
solely determined by the solution to the optimal control problem.
Similarly, q(τ , z̄i) and δ(τ , z̄i) depend only on the final time τ and
the initial state of the ith agent. In other words, no parameter
selection, which would potentially put in question the distributed
character of the algorithmic tools that will be introduced later on,
is required.Moreover, in order to better illustrate the connection of
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