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a b s t r a c t

A class of control-delay systems exhibiting a hysteresis behavior is considered. Existence of solutions and
a relaxation result are obtained for this system.
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1. Introduction

Let r > 0 be a finite delay. For an interval T ⊂ R denote by
C(T , Rn), n = 1, 2, the space of continuous functions from T to Rn

equipped with the sup-norm. In particular, C0 := C([−r, 0], R) is
the space of continuous functions from [−r, 0] to R. The norm on
C0 we will denote by | · |∞. For x ∈ C([−r, 1], R) define
xt(τ ) := x(t + τ), τ ∈ [−r, 0].
In this paper we consider the control system:

a1v̇(t) + a2ẇ(t) = h1(vt , wt)u1(t) for a.e. t ∈ [0, 1], (1.1)

ẇ(t) + ∂ IK(v(t))(w(t)) ∋ h2(vt , wt)u2(t) for a.e. t ∈ [0, 1], (1.2)

v(τ) = v0(τ ), w(τ) = w0(τ ), τ ∈ [−r, 0], (1.3)
subject to the mixed control constraint:

u(t) = (u1(t), u2(t)) ∈ U(t, vt , wt) for a.e. t ∈ [0, 1]. (1.4)
Here, ai, i = 1, 2, are given constants. The scalar functions hi(·, ·),
i = 1, 2, are defined on C0 × C0. The set K(v) = [f∗(v), f ∗(v)] is
a possibly degenerate interval with f∗(v), f ∗(v) being two nonde-
creasing functions coinciding out of a fixed interval. The operator
∂ IK(v) is the subdifferential in the sense of the convex analysis of the
indicator function ofK(v). Furthermore,U : T×C0×C0 → 2R2

is a
multivalued mapping with compact, in general, nonconvex values
and v0, w0 ∈ C0 are such that
w0(0) ∈ K(v0(0)).

E-mail address: sergey.timoshin@gmail.com.

Recall that the subdifferential of the indicator function IK(v), v ∈

R,

IK(v)(w) :=


0 if w ∈ K(v),
+∞ otherwise,

of the interval K(v) = [f∗(v), f ∗(v)] has the form:

∂ IK(v)(w) =


∅ if w ∉ [f ∗(v), f∗(v)],

[0, +∞) if w = f ∗(v) > f∗(v),
{0} if f∗(v) < w < f ∗(v),

(−∞, 0] if w = f∗(v) < f ∗(v),
(−∞, +∞) if w = f∗(v) = f ∗(v).

(1.5)

The differential inclusion (1.2) is equivalent to an operator
equation with a hysteresis operator of generalized play type with
generating curves f∗ and f ∗. This equation defines a hysteresis
relationship between two functions: the input v and the output
w. Hysteresis phenomena are encountered in a large variety
of real world situations. The areas of investigation where they
arise range from thermomechanics to population dynamics and
economics. Themathematical treatment of hysteresis has received
a considerable attention during the last three decades (cf.,
e.g., monographs [1–4]). Optimal control problems for systems
describing hysteresis effects also appeared in a number of recent
works [5–10].

Despite the fact that already a rather simple model exhibiting
hysteresis behavior, that of an automotive thermostat, is readily
exposed to a delay effect [11], there are literally just a few papers
considering differential systems with interplay of hysteresis and
delay [12,13]. Moreover, to the best of the author’s knowledge,
there have been no contributions so far dealing with control
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systems combining the twophenomena. The present paper intends
to start the corresponding research.

A physically simplified model of the dynamic behavior of
thermostats in cars controlling the operating temperature of the
engine considered in [11,12] is given by the following system:

θ̇ (t) = qe − qrω(t − τ), t ≥ 0, (1.6)
ω̇(t) ∈ −∂ IJ(θ(t))(ω(t)), t ≥ −τ , (1.7)

θ(t) = θ0(t), −τ ≤ t ≤ 0, ω(−τ) = ω0, (1.8)

for the unknown temperature of the coolant fluid θ(t) and the
fractional thermostat opening ω(t). Here, qe is the engine heat
generation, qr is the cooling power of the radiator assumed to be
constant, θ0 is the initial condition for the temperature over the
interval [−τ , 0], ω0 is the initial value of the thermostat opening,
τ is the delay. The appearance of hysteresis is explained by the
difference of the way the thermostat opens when the temperature
rises from the way it closes when the temperature falls, and the
hysteresis region is described by J(θ) = [fR(θ), fL(θ)], θ ∈ R, with
fR, fL being two given curves. The delay τ is induced by the cooling
loop, this is the time the cooling flow takes to run from the radiator
to the engine.

The Ref. [13] deals with a model similar to that described
by (1.6)–(1.8) with a different hysteresis operator to study a
physical system consisting of a solid body kept around a certain
temperature range by a thermostat in the situation when the
temperature of the body is measured at a place on the body
different from the place where the heat of the thermostat is
applied, thus introducing a delay into the system.

Note that (1.6)–(1.8) is a special case of our evolution system
(1.1)–(1.3) with a fixed control u. In particular, a possible
optimization of the engine cooling process can be achieved in a
naturalway by a partial control of the heat exchange in the radiator
in the energy balance equation (1.6).

Along with (1.4) we consider the following alternative con-
straint:

u(t) ∈ coU(t, vt , wt) a.e. on [0, 1]. (1.9)

where co stands for the closed convex hull.
A solution of control system (1.1)–(1.4) is a pair (x, u), x =

(v, w) ∈ C([−r, 1], R2), u = (u1, u2) ∈ L2(T , R2) such that the
restriction x|[0,1] is absolutely continuous, v(τ) = v0(τ ), w(τ) =

w0(τ ), τ ∈ [−r, 0], and (1.1), (1.2), (1.4) hold a.e. on [0, 1]. A
solution of (1.1)–(1.3), (1.9) is defined similarly.

Note that from (1.2) and (1.5) it follows that for a solution
(x, u), x = (v, w), we necessarily have w|[0,1] ∈ K(v|[0,1]).

In the present paper we prove the existence of solutions to
system (1.1)–(1.3) with both constraints (1.4) and (1.9). Then, we
show that any solution subject to the latter convexified constraint
can be approximated by solutions of (1.1)–(1.4). This important in
the control theory property is usually referred to as relaxation.

2. Preliminaries and assumptions

Let H be a Hilbert space with the inner product ⟨·, ·⟩. A function
ϕ : H → R ∪ {+∞} is said to be proper if its effective domain

domϕ = {x ∈ H : ϕ(x) < +∞}

is nonempty. By definition, the subdifferential ∂ϕ(x), x ∈ H , of a
proper, convex, lower semicontinuous function ϕ is the set

∂ϕ(x) = {h ∈ H : ⟨h, y − x⟩ ≤ ϕ(y) − ϕ(x), ∀y ∈ H}.

The subdifferential ∂ϕ : H → 2H is a monotone operator. Recall
that a multivalued operator A : H → 2H is called monotone if for
any x, y ∈ domA, domA = {x ∈ H : Ax ≠ ∅}, and any h1 ∈ Ax and
h2 ∈ Ay, the inequality ⟨x − y, h1 − h2⟩ ≥ 0 holds.

Let ∥ · ∥ denote the norm on the Euclidean space R2. The
Hausdorff metric on the space of nonempty compact subsets from
R2 we denote by haus(·, ·).

Let T be an interval of the real line R. We call a multivalued
mapping F : T → 2R2

measurable if {t ∈ T : F(t) ∩ V ≠ ∅}

belongs to the σ -algebra of Lebesgue measurable subsets of T for
any closed set V ⊂ R2.

For a Banach space X the notation ω-X means that the space X
is equipped with the weak topology. The same notation is used for
subsets of X with the topology induced by that of the space ω-X .

We make the following assumptions on the functions describ-
ing our system (1.1)–(1.4):

Hypothesis H(f). The functions f∗, f ∗ defining the hysteresis
region K(v) in (1.2) are such that f∗(v) ≤ f ∗(v), v ∈ R, and

(1) f∗, f ∗ are nondecreasing and Lipschitz continuous on R;

(2) there exists k0 > 0 such that f∗(v) = f ∗(v) for v ∈

(−∞, −k0] ∪ [k0, +∞).

Hypothesis H(a). The constants ai > 0, i = 1, 2;

Hypothesis H(h). The functions hi : C0 × C0 → R, i = 1, 2, have
the properties:

(1) there exists Ci > 0, i = 1, 2, such that

|hi(v, w)| ≤ C1 + C2∥(v, w)∥∞, v, w ∈ C0, (2.1)

where ∥ · ∥∞ is the sup-norm on the space C([−r, 0], R2);
(2) hi, i = 1, 2, are Lipschitz continuous on C0 × C0:

|hi(v1, w1) − hi(v2, w2)| ≤ L(|v1 − v2|∞ + |w1 − w2|∞)

(2.2)

for some L > 0, and any vi, wi ∈ C0, i = 1, 2.

Hypothesis H(U). The multivalued mapping U : T × C0 × C0 →

2R2
admits compact values and is such that:

(1) the mapping t → U(t, v, w), v, w ∈ C0, is measurable;
(2) there exists a function k(·) ∈ L2(T , R+) such that

haus(U(t, v1, w1),U(t, v2, w2))

≤ k(t) ∥(v1, w1) − (v2, w2)∥∞ (2.3)

for any vi, wi ∈ C0, i = 1, 2, a.e. on [0, 1];
(3) the following inequality holds:

∥U(t, v, w)∥

= sup


u1, u2 ;

u1, u2

∈ U(t, v, w)


≤ m (2.4)

for a.e. t ∈ [0, 1], v, w ∈ C0, and a positive constantm.

3. Existence and uniqueness for a fixed control u

In this section we prove that system (1.1)–(1.3) with a fixed
control u ∈ L2([0, 1], R2) has a unique solution.

Consider the system:

a1v̇(t) + a2ẇ(t) = ϕ1(t) a.e. on [0, 1], (3.1)

ẇ(t) + ∂ IK(v(t))(w(t)) ∋ ϕ2(t) a.e. on [0, 1], (3.2)

v(0) = v0(0), w(0) = w0(0), (3.3)

for ϕ1, ϕ2
∈ L2([0, 1], R). Its solution is a pair (v, w) ∈ W 1,2

([0, 1], R2), v(0) = v0(0), w(0) = w0(0), w ∈ K(v), such that
(3.1), (3.2) hold.
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