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a b s t r a c t

In this paper we consider controllability for transmission system of coupling wave equations with
Euler–Bernoulli equations on Riemannian manifolds. We show that such a system is exactly controllable
by boundary controls only along the exterior boundary, which means there is no control on the interface
of the transmission system. Our proofs rely on the Hilbert Uniqueness Method (HUM) and geometric
multiplier method.
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1. Introduction

Transmission systems appear inmany practical control systems
such as chemical reactions coupling, structural-acoustic systems
and many other interactive physical processes. Among these sys-
tems are the transmission problem of hyperbolic systems, which
attract much attention and have strong physical backgrounds, for
example, it can describe the displacement of flexible structures
consisting of two physically different types of materials. The anal-
ysis of controllability and stabilization for the transmission of hy-
perbolic systems has been widely carried out.

In this article we aim to discuss the controllability of trans-
mission system of coupling wave equations with Euler–Bernoulli
equations on Riemannian manifolds, of which system we consid-
ered the stabilization property in our recent work [1]. More pre-
cisely, we consider the case where we only introduce the control
on the exterior boundary. That means there is no control on the in-
terface of the transmission problem. We prove that the system is
exactly controllable under some geometric assumptions on the in-
terface. We found that such kind of geometric assumption cannot
be removed. The reason is that, the systemmay not be controllable
only from exterior boundaries, due to total reflection at the inter-
face, as already pointed out by many other authors, see [2,3].

1.1. Statement of the problem and the main result

Let M be a complete two dimensional Riemannian manifold of
class C3 with C3-metric g(·, ·) = ⟨·, ·⟩. For each x ∈ M , Mx is the
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tangential space ofM at x. Denote the set of all n order tensor fields
on M by T n(M) = ∪x∈M T n

x (M), where n is a nonnegative integer.
It is well known that the space T n

x (M) of n order tensor onMx is an
inner product space. Its inner product is defined by

⟨T1, T2⟩Tnx =

2
i1,i2,...,in=1

T1(ei1 , . . . , ein)T2(ei1 , . . . , ein) at x, (1.1)

for any T1, T2 ∈ T n
x (M), where e1, e2 is an orthonormal basis ofMx

for x ∈ M . For any T ∈ T 2(M), the trace of T is defined by

trT =

2
i=1

T (ei, ei). (1.2)

We denote by ∇ the gradient, by D the Levi-Civita connection and
by ∆ = div(∇) the Laplace–Beltrami operator in the Riemannian
metric g . For any vector field H onM , DH is the covariant differen-
tial ofH which is a second order tensor field in the following sense:

DH(X, Y ) = DYH(X) = ⟨DYH, X⟩

for all X, Y ∈ Mx, x ∈ M. (1.3)

For scalar function uwe have Du = ∇u.
LetΩ be an open, bounded, connected subset ofM with smooth

boundary Γ such that Ω̄ = Ω̄1 ∪ Ω̄2, where Ωi, i = 1, 2 are two
disjoint open connected bounded domains with smooth boundary.
They satisfy that Ω̄1 ∩ Ω̄2 = S, ∂Ω1 = S ∪ Γ1 and ∂Ω2 = S ∪ Γ2
(see Fig. 1).

We consider the wave equation in Ω1 coupled with the
Euler–Bernoulli plate equation in Ω2 by the interface S with
boundary controls φ(x, t), ψ(x, t), ζ (x, t) on Γ0 ⊂ Γ which is a
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Fig. 1. The domain.

subset of the exterior boundaryΓ . More precisely, we consider the
following system:

∂2t u1(x, t)−1u1(x, t) = 0, inΩ1 × (0,+∞),

∂2t u2(x, t)+∆2u2(x, t)− (1 − µ)div(K∇u2)(x, t) = 0,
inΩ2 × (0,+∞),

ui(x, 0) = u0
i (x), ∂tui(x, 0) = u1

i (x),
inΩi, i = 1, 2,

u1 = u2, B1u2 = 0, B2u2 = ∂ν1u1,
on S × (0,+∞),

u1 = 0, on (Γ1/Γ0)× (0,+∞),
u1 = φ, on (Γ1 ∩ Γ0)× (0,+∞),
u2 = ∂ν2u2 = 0, on (Γ2/Γ0)× (0,+∞),
u2 = ψ, on (Γ2 ∩ Γ0)× (0,+∞),
∂ν2u2 = ζ , on (Γ2 ∩ Γ0)× (0,+∞),

(1.4)

where K is the Gaussian curvature function on Ω2. Here νi =

νi(x) denotes the unit outward normal vector of Ωi along ∂Ωi =

Γi ∪ S for i = 1, 2. In the above system, 0 < µ < 1
2 is the

Poisson coefficient, and the boundary operators B1, B2 are defined
on ∂Ω2 = Γ2 ∪ S as follows:

B1y = 1y − (1 − µ)D2y(τ2, τ2),
B2y = ∂ν21y + (1 − µ)∂τ2


D2y(τ2, ν2)


+ K∂ν2y,

where D2y is the Hessian of y and τ2 is the unit tangential vector
along the boundary ∂Ω2 = Γ2 ∪ S.

Remark 1.1. The term (1 − µ)div(K∇u2) in the system (1.4)
comes from the curvedness of the Riemannianmetric g . For details,
see [4, Model, pp. 150].

To obtain the controllability of the problem (1.4), the following
geometrical hypotheses are assumed:

Geometrical assumptions Given the triple {Ω1, S,Ω2}, there
exists a vector field H on Riemannian manifold (M, g) such that
the following three properties hold true:

(A.1) DH(·, ·) is strictly positive definite on Ω: there exists a
constant ρ > 0 such that for all x ∈ Ω , for all X ∈ Mx (the
tangent space at x):

DH(X, X) ≡ ⟨DXH, X⟩ ≥ ρ|X |
2. (1.5)

(A.2) The control area Γ0 , Γ 1
0 ∪ Γ 2

0 satisfies

Γ i
0 = {x ∈ Γi

⟨H, νi⟩ > 0 on Γi, i = 1, 2}. (1.6)

(A.3) The interface satisfies

⟨H, νi⟩ = 0, on S. (1.7)

Remark 1.2. For any Riemannian manifold M , the existence of
such a vector field H in (A.1) has been proved in [5], where some
examples are given, too. See also [4]. In the framework of Euclidean
metric, one can take the vector fieldH = x−x0. This was given first
in the paper [6] as well as in [7,8]. Thus DH(X, X) = |X |

2 follows,
which means assumption (A.1) always holds true with ρ = 1 for
the Euclidean case.

Here we state our main result.

Theorem 1.1. We assume the geometrical assumptions (A.1),
(A.2) and (A.3) hold true. Then the transmission problem (1.4) is
exactly L2(Ω1) × L2(Ω2) × H−1(Ω1) × H−2(Ω2) controllable by
L2(0, T ; L2(Γ 1

0 )) × L2(0, T ; L2(Γ 2
0 )) × L2(0, T ; L2(Γ 2

0 )) controls,
i.e., there exist some T > T0, control functions φ ∈ L2(0, T ; L2(Γ 1

0 )),
ψ ∈ L2(0, T ; L2(Γ 2

0 )) and ζ ∈ L2(0, T ; L2(Γ 2
0 )) such that the corre-

sponding solution (u1, u2, ∂tu1, ∂tu2) of (1.4) satisfies

(u1, u2)(·, T ) = 0, (∂tu1, ∂tu2)(·, T ) = 0,

where Γ i
0 are given in (1.6) and

T0 =
8
ρ

sup
x∈Ω1

|H|. (1.8)

1.2. Literature

Controllability for transmission problems were studied by sev-
eral authors, for example, for the coupled wave equations with
constant coefficients, the controllability results are presented in [2]
by applying the Hilbert Uniqueness Method (HUM). For the cou-
pled wave equations with variable coefficients (describing the
wave with variable propagation speed), the boundary controllabil-
ity is treated in [9], which involves the research for transmission
problem of anisotropic elastic materials. The exact controllability
for transmission plate equations was addressed in [10]. We refer
to [11–15] for related results on transmission problems of other
hyperbolic systems.

These works mentioned above offer fruitful results regarding
the transmission systems in the framework of Euclidean metric.
However, the problems on the compact Riemannian manifolds
have limited results compared with the problems on Euclidean
spaces. The main difficulty comes from the fact that the trapped
geodesics in the general Riemannian manifolds can preclude the
effectiveness of the canonical multiplier which plays an important
role in obtaining the global estimates in the controllability analysis.
At the same time, the transmission problems on Riemannian
manifolds have strong practical applications. For example, once the
plates in [16,17] have curved middle surfacesΩ , the transmission
system considered by [16,17] becomes the one on the general
Riemannian manifold (Ω, g), where g is the induced Riemannian
metric.

In the present paperwe consider the controllability of a coupled
wave–plate system on Riemannian manifolds. The main tool we
use is the geometric multiplier method, which first appeared
in [5] and subsequently in [18–21,1], and many others. First, we
establishmultiplier equality for the coupledwave–plate system on
Riemannianmanifolds. Then, under the geometric assumptions on
the domain, we obtain the controllability of the coupled system in
Theorem 1.1.

The content of this paper is organized as follows. In Section 2,
we establish the multiplier equality for the dual transmission
system by the geometric multiplier method. Finally in Section 3,
we present the proofs of the main results.
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