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a b s t r a c t

In this work, we present a new distributed adaptive iterative learning control (AILC) scheme for a class
of high-order nonlinear multi-agent systems (MAS) under alignment condition with both parametric
and nonparametric system uncertainties, where the actuators may be faulty and the control input gain
functions are not fully known. Backstepping design with the composite energy function (CEF) structure is
used in the discussion. Through rigorous analysis, we show that under this new AILC scheme, uniform
convergence of agents output tracking error over the iteration domain is guaranteed. In the end, an
illustrative example is presented to demonstrate the efficacy of the proposed AILC scheme.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Multi-agent systems (MAS), or networked cooperative systems,
have attracted considerable attention from the research commu-
nity in the past decade or so, due to their widespread applica-
tions and cross-disciplinary nature [1–3]. In particular, there are
many applications in which tracking a desired trajectory by all the
agents is desirable. In such problems, the desired trajectory can be
seen as generated by a virtual leader, and is not influenced by all
the other agents in the network. Furthermore, the full information
of the desired trajectory may only be available to a subset of the
agents in the network. In the literature, this is usually called leader-
following consensus [4], model reference consensus [5], leader-
following control [6] and so on.

It is well known now that iterative learning control (ILC) is
effective in handling repeated control processes. Because of its
structural simplicity and effective learning ability in the process of
controller design, ILC has beenwidely used in industries for control
of repetitive motions, such as robotic manipulators, hard disk
drives, chemical plants, and so forth [7–10]. By taking advantage
of the repetitive nature in the learning process, ILC algorithms can
improve the tracking performance progressively, so that to achieve
perfect tracking asymptotically or exponentially as the iteration
number increases. The use of ILC for MAS is a relatively new field
and has been reported in a few previous works in the literature.
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In [11], a high-order internal model (HOIM) based ILC scheme
for MAS formation is studied. In [12], a distributed ILC scheme is
developed forMASwith switching topology. In [13], the finite-time
output consensus problem of MAS is considered with ILC schemes.
However, these works are based on the contraction mapping
approach. This approach relies on the restrictive assumption of
perfect resetting, or known as identical initial condition, which
means that the tracking error at the start of each iteration should
be reset to zero perfectly, but this conditionmay not be practically
implementable. A slight mismatch in the initial condition may
result in divergence of tracking error [14]. Amongnumerous efforts
that aim at mitigating this constraint, the alignment condition
appears to be practical for a number of applications, in which the
final state of the previous iteration becomes the initial state of
the current iteration. The reference trajectory is spatially closed,
meaning that the starting point of the reference trajectory is also
the end point in each iteration. ILC under alignment condition
for MAS consensus tracking have been studied in several works,
for example, [15] for first order MAS, and [16] for second order
systems, all for systemswith undirected graph topologies. Besides,
in theseworks the systemuncertainty terms are assumed to satisfy
parametric forms, which exclude the uncertainties or disturbances
that may only be norm-bounded. High-order nonlinear MAS with
direct graph topologies have not been rigorously studied in the
literature, and remain as an open question for further studies.
The work [17] is one of the few that address the high-order
MAS problems in ILC domain. However, this work also considers
undirected graph topology only. Furthermore, the control input
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gain function is totally known, and the agents actuator system is
assumed to be free from potential faults, which limits the practical
application into real engineering systems. To the best of our
knowledge, there is no previous work that addresses high-order
nonlinearmulti-agent systems under directed graph topologywith
uncertain control input gain functions and actuator faults in the ILC
frame, without assuming the identical initial condition.

In this work, to address all the important and challenging issues
mentioned above,we present a novel distributed adaptive iterative
learning control (AILC) scheme for MAS output consensus tracking
problems for a class of high-order nonlinear MAS with a directed
graph topology under alignment condition. Both parametric
and nonparametric system uncertainties are considered. Full
information about the desired output trajectory is only available to
a subset of all the agents. The control input gain functions for the
agents are not totally known. Furthermore, the agents actuators
may be subject to both multiplicative and additive actuator
faults, where the multiplicative faults may represent the loss of
efficiency over time, and additive actuator faults may represent
the faults presented in the control input channel. Nonparametric
uncertainties such as norm-bounded nonlinear uncertainties can
be effectively handled, where the unknown bounds of the
uncertainties can be handled by a corresponding ILC update law.
Through rigorous analysis, we show that under this new AILC
scheme, uniform convergence of the agents output tracking error
over the iteration domain is guaranteed. The main contributions
of this work can be summarized as follows: (1) a novel distributed
AILC scheme for high-order nonlinear MAS with a directed graph
topology has been proposed to guarantee uniform tracking error
convergence over the iteration domain; (2) the proposed algorithm
can effectively deal with both parametric and nonparametric
uncertainties, where the parametric uncertainties contain time-
varying functions, and the nonparametric uncertainties satisfy
norm-bounded conditions; (3) both multiplicative and additive
actuator faults are considered; (4) state-dependent control input
gain functions which are not fully known can be effectively dealt
with.

2. Basic graph theory and notations

A weighted graph is represented by G = (V , E), where V =

{v1, . . . , vN} is a nonempty set of nodes/agents, E ⊆ V×V is the set
of edges/arcs. (vi, vj) ∈ E indicates that agent j can get information
from agent i, but not necessarily vice versa. In this case, agent i is
called a neighbor of agent j. The topology of a weighted graph G
is often represented by the adjacency matrix A = [aij] ∈ RN×N ,
where aij = 1 if (vj, vi) ∈ E, otherwise aij = 0. Throughout this
work, it is assumed that ajj = 0, j = 1, . . . ,N , and the topology
is fixed, i.e., A is time-invariant. G is a directed graph, or digraph in
short. Define di =

N
j=1 aij as the weighted in-degree of node i and

D = diag(d1, . . . , dN) ∈ RN×N as the in-degree matrix. The graph
Laplacian matrix is L = [lij] = D − A ∈ RN×N .

In this paper, | · | is the absolute value of a real number; ∥ · ∥ is
the Euclidean norm of a vector; matrix P > 0(P ≥ 0) means P is
positive definite (positive semidefinite); θ T denotes the transpose
of the vector θ .

3. Problem formulation

Consider N(N > 2) agents with distinct high-order nonlinear
dynamics. Dynamics of the jth (j = 1, . . . ,N) agent at the kth
iteration is described as

ẋk,j,i(t) = xk,j,i+1(t), i = 1, . . . , n − 1,
ẋk,j,n(t) = bj(x̄k,j)(ρj(t)uk,j(t)+ φj(t))

+ dj(x̄k,j, t)+ΘT
j (t)Fj(x̄k,j),

yk,j(t) = xk,j,1(t), (1)

where k = 1, 2, . . . is the iteration index, t ∈ [0, T ], T > 0
represents the operation time in each iteration. xk,j,i(t) ∈ R is
the ith state variable of the agent j at the kth iteration, x̄k,j =

[xk,j,1, . . . , xk,j,n]T ∈ Rn is the state vector of the agent j. dj(x̄k,j, t) ∈

R are bounded nonparametric uncertainties. Θj(t) ∈ Rm are the
unknown time-varying functions that are iteration independent,
Fj(x̄k,j) ∈ Rm are the known nonlinear state dependent functions.
yk,j(t) is the jth agent output of at the kth iteration. ρj(t)uk,j(t) +

φj(t) ∈ R is the actuator signal of the node j, where uk,j(t) ∈

R is the control action to be designed. Here we consider both
multiplicative actuator faults ρj(t) and additive actuator faults
φj(t). If ρj(t) = 1 and φj(t) = 0, we say that the jth agent is free
from actuator faults [18].

Remark 1. The agents’model (1) is awidely discussed formulation
in the nonlinear system literature, which is also sometimes
referred to as the Brunovsky canonical form. For example,
certain dynamic models for the flight of helicopters [19], chaotic
systems [20,21], electro-hydraulic systems [22], can be converted
into the form of (1).

Remark 2. The formulation of nonparametric term dj(x̄k,j, t) and
parametric term ΘT

j (t)Fj(x̄k,j) represents a wide range of system
uncertainties. In the adaptive fuzzy control literature, it is often
assumed that a continuous function f (x) defined on a compact
set can be represented to an arbitrary degree of precision as
f (x) = ΘT F(x)+ ε(x), where in this case F(x) is known and called
the base functions, Θ is the ideal neural network weight vector
that is unknown and constant, and ε(x) is the neural network
approximation error which is unknown and can be arbitrarily
small [23,24]. Compared with such a formulation, the formulation
presented in (1) is more general, as the parametric unknown term
can be time-varying, and the nonparametric unknown term can be
both time and state dependent.

The desired output trajectory for the MAS (1) is defined as

yr(t) =

nr
l=1

ωr,l(t)ψr,l + ϕr,2 = ϖ T
r,1(t)ϕr,1 + ϕr,2, (2)

where ϖr,1(t) = [ωr,1(t), . . . , ωr,nr (t)]
T

∈ Rnr is a vector of
basis functions that is accessible by all agents, whereas ϕr,1 =

[ψr,1, . . . , ψr,nr ]
T

∈ Rnr and ϕr,2 ∈ R are constant parameters
that are only accessible by certain agents. Collectively, we can
express (2) as yr(t) = ϖ T

r (t)ϕr , where ϖr(t) = [ϖ T
r,1(t), 1]

T
∈

Rnr+1, and ϕr = [ϕT
r,1, ϕr,2]

T
∈ Rnr+1.

Under the alignment condition, the desired output trajectory
satisfies the spatial closeness condition, meaning yr(0) = yr(T ).
Furthermore, we also have y(l)r (0) = y(l)r (T ) for l = 1, . . . , n −

1, where y(l)r (t) denotes the lth order derivative of yr(t) with
respective to time. This means, in each iteration of operation, the
desired system trajectory will end where it will start from in the
next iteration. Alignment condition also implies that the resetting
effort is not necessary at the beginning of each iteration, which is
unlike the traditional identical initial condition, where the initial
tracking error has to be reset to zero at the start of each iteration.
Hence, under alignment condition, xk,j,i(0) = xk−1,j,i(T ) for j =

1, . . . ,N and i = 1, . . . , n, whichmeans the systemwill start from
where it stopped in the previous iteration.

Remark 3. The formulation of the desired output trajectory (2)
can be seen in many works like [25,26]. Notice that yr(t) can be
regarded as periodic with period T , since yr(0) = yr(T ), and
yr(t) is iteration independent. We know from trigonometric form
of the Fourier series, that yr(t) can be written as yr(t) = a0 +

∞

l=1(al cos(
2π l
T t) + bl sin( 2π lT t)), where a0, al and bl are called
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