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a b s t r a c t

A large number of controlmethods dealwith stabilizing single-input linear systemswith input saturation.
The linear full-state feedback is one of the most used, yielding either nonsaturating or high gain controls,
whereby the saturating effects of the latter are reduced by means of anti-windup structures. Among the
nonlinear controls, the time optimal control, in this case a bang–bang type control, yields the fastest
time response, but its switching surface is generally not characterizable. Related to the speed of the time
response is the convergence rate, which can be determined using invariant sets. The most used ones
are the ellipsoidal sets, since they can be analyzed using powerful tools such as the Lyapunov equation
and designed via convex optimization. For this reason, they are also used for designing soft variable
structure controls. The paper presents a nonconservative design method for a stabilizing control of this
type employing implicit Lyapunov functions (iLF). A nonsaturating control law is given, including some
infinitely densely nested and contractive invariant sets of the equilibrium state. The control law is then
optimized by maximizing the iLF-based lower bound of the convergence rate. The maximal convergence
control is shown to be of bang–bang type, with a parameter dependent switching scheme. To overcome
possible difficulties of a switching controller, a saturating high gain control is also presented.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

For LTI systems with input saturation, the problem of achieving
a fast response can be solved using the time optimal control, which,
in this case, is a bang–bang type control. However, since it is
generally not possible to characterize the switching surface, the
time optimal control law is usually given only for systemswith low
dimensions. Also, the discontinuity of the bang–bang control law
may cause technical difficulties, such as the uninterrupted activity
of the control due to unavoidable noise, which is unnecessary and
may damage the actuators.

A fast response may also be related to the convergence rate of
a stable system, which is defined as the smallest decay factor by
which the normof the state trajectory converges to the equilibrium
state. For linear systems, the convergence rate is the same for
the entire state space and corresponds to the absolute value of
the real part of the pole that is closest to the imaginary axis. For
nonlinear systems it depends on the distance to the equilibrium
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state. For this purpose, the theory of invariant sets has been used
to guarantee a lower bound of the convergence rate inside an
invariant set, where also the range of the systems’ input is not
exceeded. Different types of sets have been used,mainly ellipsoidal
sets, see for example [1], and polyhedral sets, see for example [2].
Using Lyapunov functions to describe the invariant sets, a lower
bound of the convergence rate is given by theminimal decay factor
of the Lyapunov function along the trajectories of the system that
start inside the invariant set. The maximal convergence control for
LTI systemswith input saturation can be shown to be of bang–bang
type, having a simple switching scheme that involves the given
Lyapunov function. Design procedures can be found for example
in [3,4].

Another method to increase the speed of the time response
is by employing variable structure controls (VSC), with or
without sliding modes. The latter, which intentionally preclude
sliding modes, continuously vary the controllers’ parameters (or
structures) according to the distance to the equilibrium state. The
first systematically developed method of this type was presented
in [5]. A survey of different types of VSCs (without sliding modes)
can be found in [6]. One of them is the soft VSC employing
implicit Lyapunov-functions (iLFs), which was presented in [7,8].
The parameter variation evolves continuously, and the parameter
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serves as an implicit Lyapunov-function of the system, which
guarantees its stability. See for example [9–11] and the references
therein for contributions to the stabilization of single-input linear
systems by means of this (or a similar) iLF method. Design
procedures for soft VSCs using ellipsoidal sets can be found for
example in [10,12,13]. They use linearmatrix inequalities (LMIs) to
describe the stability conditions. However, they are only sufficient,
and may render conservative control laws.

The paper presents the necessary and sufficient conditions
for the existence of a stabilizing soft VSC employing iLFs with
ellipsoidal level sets for single-input LTI systems with input
saturation. If the conditions are fulfilled, a bounded control law is
given togetherwith some infinitely densely nested and contractive
invariant sets of the equilibrium state. The control law is then
optimized by maximizing the iLF-based lower bound of the
convergence rate. The maximal convergence control is shown to
be simply a bang–bang type control with a parameter varying
switching scheme. To overcome potential difficulties with the
switching controller, the paper presents also a saturating high gain
soft VSC employing iLFs, which, at the cost of a slight reduction
in the convergence rate, achieves a fast response without the
disadvantages of a discontinuous control.

Since the existence conditions are both necessary and sufficient,
the presented synthesis method is nonconservative. Furthermore,
all existence conditions can be formulated by means of linear ma-
trix inequalities (LMIs), yielding a convex optimization problem.
The stabilizing control law possesses also some (constant) param-
eters, which – under some certain bounds – influence the given
contractive invariant set of the equilibrium state and the speed of
the time response. The maximal convergence control, which is a
bang–bang type control, can be employed to achieve a faster re-
sponse. In addition, a sufficient gain for its continuous approxima-
tion is given in a very general form, depending on the null space of
the switching vector.

The paper is organized as follows. Section 2 gives some
preliminary notes. Section 3 presents the necessary and sufficient
conditions for the existence of a soft VSC bymeans of iLFs. Section 4
presents themaximal convergence control and the saturating high
gain soft VSC employing iLFs. Section 5 shows the design steps
of the proposed control laws. Section 6 compares the proposed
control lawswith the timeoptimal control bymeans of an example.
Section 7 concludes.

2. Preliminary notes

Throughout the paper, the symbols ∃ and ∀ denote it exists,
respectively for all, ⊗ denotes the Kronecker product, and ∥ ·

∥ denotes the Euclidean norm. Sn denotes the set of all n × n
symmetric matrices, Pn denotes the set of all positive definite
matrices, and A ≻ B means that A − B ∈ Pn. Furthermore, N (A)
denotes the null space of a matrix A ∈ Rm×n, i.e. N (A) := {x ∈

Rn
|Ax = 0}, and L(u, β) denotes a linear region of saturation,

i.e. L(u, β) := {x ∈ Rn
| |u(x)| ≤ β}. For parameter dependent

matrices and vectors the following notations are used: Xv := X(v)
and xv := x(v). Finally, G(v) denotes an ellipsoidal region, i.e.
G(v) := {x ∈ Rn

|x⊤Pvx < 1}, with Pv ≻ 0. Also, the following
definitions will be used:

Definition 2.1 (Contractive Invariant Set). Consider the dynamic
system ẋ = f(x), x ∈ Rn, having an equilibrium state xR = 0, and
a unique solution for every initial state. For a given matrix Pv ≻ 0,
the closed set G(v) := {x ∈ Rn

|x⊤Pvx < 1} is called contractive
invariant if

∂x⊤Pvx
∂x

· ẋ = 2x⊤Pv · f(x) < 0, ∀x ∈ G(v) \ {0}.

It is furthermore positively invariant, since all trajectories that start
within the set, remain in it for all future time.

Definition 2.2 (Nested Ellipsoidal Regions). The sets G(v1) and
G(v2), with 0 < v2 < v1, are called nested, if their boundaries,
∂G(v1) and ∂G(v2), have no common points, that is ∂G(v1) ∩

∂G(v2) = ∅, and G(v2) ⊂ G(v1).

Definition 2.3 (Full-Rank Factorization). Let A ∈ Rm×n, with
rank(A) = r . The tuple (Al, Ar), whereAl ∈ Rm×r , with rank(Al) =

r , and Ar ∈ Rr×n, with rank(Ar) = r , is called full-rank factorization
of matrix A if A = AlAr .

Definition 2.4 (Convergence Rate of an Exponentially Stable Nonlin-
ear System). The convergence rate of an exponentially stable non-
linear system ẋ = f(x), x ∈ Rn, is defined to be the maximal
decay factor α > 0, for which a scalar γ > 0 exists, so that
∥x∥ ≤ γ ∥x0∥e−αt , ∀t > 0.

Finally, the following lemma, which is a direct result from
[14, Proposition 11.9.5], will be also used:

Lemma 2.1. The following statements are equivalent:
(i) The equilibrium state x = 0 of the system ẋ = Ax, x ∈ Rn, A ∈

Rn×n, is asymptotically stable.
(ii) ∃ P ∈ Pn, such that AP + PA⊤

≺ 0.

3. Existence conditions for a soft VSC employing iLFs

In the following, we consider single input LTI systems in control
normal form, i.e.

ẋ = Ax + bu, x ∈ Rn, u ∈ R, |u| ≤ 1. (1)

The general form of the soft VSC analyzed here is

u = −f (x, v), (2)

where, for a given x, the parameter v ∈ (0, 1] is determined by a
selection strategy of the form

g(x, v) = x⊤Pvx − 1 = 0, (3)

which divides the state space into ellipsoids, each denoted by
∂G(v) := {x ∈ Rn

|x⊤Pvx = 1}.
The following theorem, which is a direct result of the theorem

given in [8, Theorem 4], presents some sufficient conditions for
contractive invariance and nesting of some parameter dependent
sets, ensuring also the asymptotic stability of the equilibrium state
of the closed-loop system.

Theorem 3.1 (Based on [8, Theorem 4]). Let h(x) be a continuous
function and for t ≥ 0, consider the dynamical system

ẋ = h(x), x ∈ Rn,

with the equilibrium state xR = 0 and unique solution for every
initial state. If there exists a continuous and differentiable function
g(x, v) : H0 → R, with H0 = {(x, v)|x ∈ U0 \ {0}, 0 < v ≤ 1}
and U0 a neighborhood of the origin, that fulfills the conditions

(S1) from g(x, v) = 0, it follows: x = 0 ⇔ v → 0+,

(S2) lim
v→0+

g(x, v) > 0 and

lim
v→1−

g(x, v) < 0, ∀ x ∈ U0 \ {0},

(S3) − ∞ <
∂g(v, x)

∂v
< 0, ∀(v, x) ∈ H0,

(S4) − ∞ <
∂g(v, x(t))

∂t
< 0, ∀(v, x) ∈ H0,

then the equilibrium state x = 0will be asymptotically stable, and the
sets

G(v) :=

x ∈ Rn

| g(x, v) < 0


⊆ U0

nested and contractive invariant for all v ∈ (0, 1].
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