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a b s t r a c t

In this manuscript we give sufficient conditions guaranteeing the observability of singular linear systems
with commensurable delays affected by unknown inputs appearing in both the state equation and the
output equation. These conditions allow for the reconstruction of the entire state vector using past and
actual values of the system output. The obtained conditions coincidewith known necessary and sufficient
conditions of singular linear systems without delays.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The description of a variety of practical systems by means of
singular systems, also called descriptive, implicit, or differential
algebraic systems, has been shown to be useful since several
decades ago as it is well explained in [1]. Such systems, as many
others, may contain time delay terms in the state, input, and/or
system output, a compendium of new researching results for
singular systems with time delays has been recently published,
Gu et al. [2]. Despite the increasing research on problems such
as solvability, stability and controllability, up to the authors
knowledge, there is quite a fewworks dedicated to the study of the
observability of singular systemswith time delays, with orwithout
inputs. For singular systemswith a time-delay in the state (without
inputs), a condition is found in [3] that ensures the observability
of the system (interpreted as the reconstruction of the initial
condition). However, such a condition seems to be difficult to check
since it involves an integral on time that depends on a parameter
within an infinite set. More papers, not too many, can be found
addressing the observer design problem for singular linear time-
delay systems with unknown inputs (SLSUI). In [4], a Luenberger-
like observer design is proposed by using a virtual discrete time
system with the matrices of the originally considered continuous
time system. In [5] a Luenberger-like observer is proposed for
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singular delayed linear systems with unknown inputs not affected
by time-delays.

Considering singular linear systems with unknown inputs
(without delays), in [6], conditions under which the trajectory of
the state vector can be reconstructed were given, as well as a
formula to reconstruct the state in terms of the system output and
a finite number of its derivatives, provided any state trajectory
is smooth. Regarding linear systems with commensurate delays
and affected by unknown inputs, sufficient conditions allowing
for the reconstruction of the state vector were obtained in [7].
Hence, this paper takes advantage of those both results, to tackle
the observability problem of a general class of singular linear time-
delay systems with unknown inputs. Themain contribution of this
paper is the obtaining of sufficient (checkable) conditions allowing
for the reconstruction of the trajectory of the state vector.

The remainder of the paper is organized as follows. In Section 2,
the class of singular systems considered along the manuscript
is presented, as well as the problem we aim to address. The
main result is given in Section 3, which in turn is divided into
4 subsections. In Section 3.1, the studied system is transformed,
and the state vector is split into two parts so that previous
results may be used. Observability conditions for the first part
of the transformed state vector are obtained straightforwardly in
Section 3.2. Observability conditions are deduced for the second
part of the transformed state vector in Section 3.3. Finally, with
the results of Sections 3.2 and 3.3, observability conditions for the
original system are given in Section 3.4. In Section 4, a formula
for the reconstruction of the state vector is obtained. Finally, an
academic example that illustrates the theoretical obtained results
is given in Section 5.

http://dx.doi.org/10.1016/j.sysconle.2015.12.002
0167-6911/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.sysconle.2015.12.002
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysconle.2015.12.002&domain=pdf
mailto:javbejarano@yahoo.com.mx
mailto:gang.zheng@inria.fr
http://dx.doi.org/10.1016/j.sysconle.2015.12.002


56 F.J. Bejarano, G. Zheng / Systems & Control Letters 89 (2016) 55–60

Notation. R is the field of real numbers. R [δ] is the polynomial
ring over the real field R. In is the identity matrix of dimension n
by n. A squarematrix A (δ)with terms in R [δ] is called unimodular
if its determinant is a nonzero constant. A matrix A (δ) of n by m
dimension is called left invertible if there exists a matrix, denoted
by A+ (δ), such that A+ (δ) A (δ) = Im. For a matrix F (δ) (over
R [δ]), rank F (δ) denotes the rank of F (δ) over R [δ]. The degree
of a polynomial p (δ) ∈ R [δ] is denoted by deg p (δ). For a matrix
M (δ), degM (δ) (the degree of M (δ)) is defined as the maximum
degree of all the entries mij (δ) of M (δ). The limit from below of a
time valued function is denoted as f (t−).

2. System description and problem formulation

The system considered along the paper belongs to the class
of delay systems whose dynamics is governed by the following
equations

Eẋ (t) =

ka
i=0

Aix (t − ih)+

kb
i=0

Biw (t − ih) (1a)

y (t) =

kc
i=0

Cix (t − ih)+

kd
i=0

Diw (t − ih) (1b)

where h is a positive real number. At a time t , x (t) ∈ Rn,
y (t) ∈ Rp, and w (t) ∈ Rm. The initial condition ϕ (t) is a
piecewise continuous function ϕ (t) : [−kh, 0] → Rn (k =

max {ka, kb, kc, kd}), hence x (t) = ϕ (t) on [−kh, 0]. We also
consider that w (·) ∈ Dm, which is the set of admissible vector
functionsmapping fromR toRm forwhich (1a) has a solution (such
a solution might be not unique).

All matrices Ai, Bi, Ci, andDi are constant of suitable dimension.
It is assumed that the rank of E ∈ Rn×n is strictly less than n, i.e.,
E is not invertible. The main goal of this work is to find testable
conditions under which the estimation of x (t)may be carried out
based on the knowledge of the system output y (t). For the studied
system (1) the following assumptions are imposed.

A1. Every solution of (1a) is piecewise differentiable.
Now, let us introduce the following definition dealing with the

observability of the system.

Definition 1. System (1) is said to be backward unknown input
observable (BUIO) on [t1, t2] if for each τ ∈ [t1, t2] there exist
t ′1 < t ′2 ≤ τ such that, for every input w ∈ Dm and every initial
condition ϕ,

y (t;ϕ,w) = 0 for all t ∈

t ′1, t

′

2


implies x (τ−;ϕ,w) = 0.

In the previous definition we use the word backward since for
the reconstruction of x (τ ) we require the use of values of y (t)
obtained at time instants previous than or equal to τ , which obeys
the requirement of causality imposed in practice. Thus, based
on the previous definition, the aim of this paper is to find out
conditions under which the system (1) is BUIO.

Following a standard way, we define the backward shift
operator δ : x (t) → x (t − τ). Hence, the system (1) may be
rewritten as follows,

Eẋ (t) = A (δ) x (t)+ B (δ)w (t) (2a)
y (t) = C (δ) x (t)+ D (δ)w (t) (2b)

where A (δ) =
ka

i=0 Aiδ
i, and B (δ) =

kb
i=0 Biδ

i, C (δ) =kc
i=0 Ciδ

i, and D (δ) =
kd

i=0 Diδ
i are defined likewise. Using this

notation, thematrices of system (2)may be considered asmatrices
over the polynomial ring R [δ], which allow us to use the tools of
the algebra of polynomials.

3. Sufficient observability conditions

3.1. Transformed system

By using a simple matrix decomposition, the matrix E can be
transformed into the following form
Iq 0
0 0


(3)

that is, there exist two invertible matrices (over R), denoted as R
and S, such that RES is equal to the matrix in (3). Then, (2) can be
transformed to the following form:

ż1 (t) = A11 (δ) z1 (t)+ A12 (δ) z2 (t)+ B1 (δ)w (t) (4a)
0 = A21 (δ) z1 (t)+ A22 (δ) z2 (t)+ B2 (δ)w (t) (4b)
y (t) = C1 (δ) z1 (t)+ C2 (δ) z2 (t)+ D (δ)w (t) (4c)

where

z1 (t)
z2 (t)


= S−1x (t), z1 ∈ Rq, z2 ∈ Rn−q. In order to study the

observability of the whole system, we will start for studying the
observability of z1 and z2. For this,we consider z2 as an input vector.
Let Dn−q+m be the set of functions mapping from R to Rn−q+m for
which (4a)–(4b) have a solution.

Definition 2. The state z1 (t) of (4) is said to be BUIO on [t1, t2] if
for each τ ∈ [t1, t2] there exist t ′1 < t ′2 ≤ τ such that, for every
input


zT2 wT T

∈ Dn−q+mand every initial condition ϕ,

y (t;ϕ, z2, w) = 0 for all t ∈

t ′1, t

′

2


implies z1 (τ−;ϕ, z2, w) = 0. (5)

Definition 3. The state z2 (t) of (4) is said to be BUIO on [t1, t2] if
for each τ ∈ [t1, t2] there exist t ′1 < t ′2 ≤ τ such that, for any input
w (t) ∈ Dm and every initial condition ϕ,

y (t;ϕ,w) = 0 for all t ∈

t ′1, t

′

2


implies z2 (τ−;ϕ,w) = 0.

3.2. Algebraic condition for the reconstruction of z1

If we define ȳ (t) =


0

y (t)


, ȳ (t) ∈ Rp+n−q, and the input and

output distribution matrices are expressed in the following form,

B̄ (δ) =

A12 (δ) B1 (δ)


, C̄ =


A21 (δ)
C1 (δ)


D̄ (δ) :=


A22 (δ) B2 (δ)
C2 (δ) D (δ)


then, system (4) takes the following compact form

ż1 = A11 (δ) z1 + B̄ (δ)

z2
w


(6a)

ȳ = C̄ (δ) z1 + D̄ (δ)

z2
w


. (6b)

Since y (t) = 0 if, and only if, ȳ (t) = 0, then, the implication
(5) in Definition 2 may be restated as: ȳ (t;ϕ, z2, w) = 0 for all
t ∈


t ′1, t

′

2


implies z1 (τ−;ϕ, z2, w) = 0.

Matrix recursive algorithm
Following the approach used in [7], we define the following

recursive algorithm, which generates matrices {∆k (δ)}:
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