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a b s t r a c t

This paper investigates the linear quadratic regulation (LQR) problem for discrete-time systems with
multiplicative noise. Multiplicative noise is usually assumed to be a scalar in existing literature works.
Motivated by recent applications of networked control systems and MIMO communication technology,
we consider multi-channel multiplicative noise represented by a diagonal matrix. We first show that
the finite horizon LQR problem can be solved using a generalized Riccati equation. We then prove
the convergence of the generalized Riccati equation under the conditions of stabilization and exact
observability, and obtain the solution to the infinite horizon LQR problem. Finally, we provide a numerical
example to demonstrate the proposed approach.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Recently, the control and estimation problems for systemswith
multiplicative noise have received much attention [1,2], due to
that the signals contaminated by multiplicative noise are common
in engineering and financial applications. Such examples can be
found in image processing [3], communication systems, portfolio
optimization, etc. Different from the additive noise, the second
order statistics of the multiplicative noise is usually unknown
as it depends on the control solution, which leads to additional
difficulties. The LQR problem is one of the most important optimal
control problems. The stochastic LQR problem was first studied
in [4] and has been studied by many other researchers [5–17].

In the literature related to the topic of LQR of discrete-time
linear stochastic systems two types ofmodels are usually involved.
One is the discrete-time linear systems with multiplicative
noise [6–12], the other is the discrete-time linear systems
subject to Markovian switching [13–17]. In [6], the author

✩ This work of. X. Song was supported in part by the Shandong Provincial
Key Laboratory for Novel Distributed Computer Software Technology and the
Excellent Young Scholars Research Fund of Shandong Normal University. Also, the
work of J.H. Park was supported by Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of Education
(2013R1A1A2A10005201).
∗ Corresponding author. Tel.: +82 53 8102491.

E-mail addresses: xinminsong@sina.com (X. Song), jessie@ynu.ac.kr (J.H. Park).

considered the finite horizon LQR problem for discrete-time
systems subjected to state and control-dependent noise with
additive noise using the dynamic programming technique. The
indefinite LQR problem involving state and control-dependent
noise has been introduced in [8]. On the basis of [8], [9] investigated
the indefinite LQR problem for discrete-time multiplicative noise
systems via semidefinite programming. In [10], the infinite-
horizon LQ optimal control for a stochastic system with both
state and control-dependent noise was considered. The authors
derived the optimal control law under standard assumptions of
mean-square stabilizability and exact observability. Assuming that
the feedback signal is available, [11] investigated the optimal
control and state estimation problems for multiplicative noise
systems. The H-representation and applications to generalized
Lyapunov equations for linear stochastic systems was investigated
in [12], where several topics are extensively discussed, such as
observability and stabilization.

The authors in [13] considered the LQR problem of discrete-
time Markov jump linear systems with multiplicative noise. The
weighting matrices of the state and control in the performance
criterion are allowed to be indefinite. A state feedback solution
can be derived from a set of coupled generalized Riccati difference
equations interconnected with a set of coupled linear recursive
equations. Further, [14] investigated the existence of the maximal
and mean square stabilizing solutions for a set of generalized
coupled algebraic Riccati equations associated to the infinite-
horizon LQR problem of discrete-time Markov jump linear
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systems with multiplicative noise. The authors in [15] studied
the mean–variance optimal control problem for discrete-time
systems subject to multiplicative noise and Markovian jumps.
[16] extended the H2 control problem to discrete-time periodic
systems with Markovian jumps and multiplicative noise. It is
worth noting that the multiplicative noise considered in the
aforementionedworks [6–12] are all in scalar form. In otherwords,
the multiplicative noise of each channel is assumed to be same,
which is restricted and unrealistic.

In the past few years, networked control systems have attracted
much interest from the control community. In [18], the authors
studied the problem of remote mean-square stabilization of a
MIMO system when independent fading channels are dedicated
to each actuator and sensor. [19] addressed the mean-square
stabilization problem for discrete-time networked control systems
over fading channels. Themodel of the fading channel(s) was given
in multiplicative form and possessed a diagonal structure. In [20],
the authors investigated the LQ optimal control for discrete-time
LTI systems with random input gains, and sufficient conditions are
obtained to guarantee that the infinite-horizon LQ optimal control
problem is solvable.

Motivated by the mentioned works, we consider the LQR prob-
lem for discrete-time systems with multi-channel multiplicative
noise represented by a diagonal matrix, where the multiplica-
tive noise of one channel is allowed to be different from another
channel. To the best of our knowledge, there is no other work
dealing with this problem in the literature. The main contribu-
tions of the paper are highlighted as follows: (i) We extend the
scalar multiplicative case to the diagonal matrix multiplicative
case. The multiplicative noise represented by a diagonal matrix
makes the problem more complex. We present the criteria to ver-
ify themean-square stabilization and exact observability formulti-
channel multiplicative noise systems. By employing the matrix
Kronecker product and Hadamard product flexibly, the criteria ob-
tained in our paper has the similar structure with the scalar multi-
plicative noise case in [7,9,10]; (ii) Under the assumptions of mean
square stabilization and exact observability, we present a different
way in proving the convergence of the generalized Riccati equa-
tion by introducing a backward stochastic state-space model. The
solution to the infinite horizon LQR problem is obtained in terms
of a generalized algebraic Riccati equation; (iii) The obtained re-
sult in this paper will pay the way to investigate other related con-
trol problems for systemswithmulti-channel multiplicative noise,
such as the indefinite LQR problem for Markovian jumps system,
H2/H∞ control, and so on.

The organization of this paper is as follows. Section 2 gives the
problem formulation and introduces some preliminary. Section 3
presents the results of the finite horizon and infinite horizon LQR
problem, and provides the proof of the convergence of the gen-
eralized difference Riccati equation under standard assumptions.
Section 4 provides a numerical example to demonstrate the effi-
ciency of the proposed approach. Section 5 gives some concluding
remarks.

Notation: Throughout this paper, a real symmetric matrix
P > 0 (≥0) denotes P being a positive definite (or positive
semi-definite) matrix. I denotes an identity matrix of appropriate
dimension. The superscripts ‘‘−1’’ and ‘‘T ’’ represent the inverse
and transpose of amatrix.Rn denotes the n-dimensional Euclidean
space. Rn×m is the set of all n × m real matrices. δij = 0 for i ≠ j
and δii = 1. The Kronecker product is denoted by ⊗, and the
Hadamard product by ⊙. Assume X = [X1 · · · Xn], vec(X) is
defined as [XT

1 · · · XT
n ]

T . We associate the diagonal matrix with
diagonal elements λ1, . . . , λn defined by diag{λ1, λ2, . . . , λn}.
Ker(X) denotes the kernel space of a real matrix X . Furthermore,
the mathematical expectation operator is denoted by E. tr is used
to represent the trace of thematrix. Matrices, if the dimensions are
not explicitly stated, are assumed to have compatible dimensions
for algebraic operations.

2. Problem statement and preliminary

Consider the following system

x(k + 1) = [A + ξ(k)A0]x(k) + [B + ξ(k)B0]u(k), (1)

where x(k) ∈ Rn, u(k) ∈ Rm are the state and the con-
trol input, respectively, the initial state x(0) is assumed to be
known, A, A0, B, B0 arematrices of appropriate dimensions, ξ(k) =

diag{ξ1(k), . . . , ξn(k)}, whose elements are randomprocesseswith
mean E{ξi(k)} = 0 and covariances E{ξi(k)ξj(s)} = σijδks. Let Fk be
the σ -algebra generated by the sequence {ξ(0), ξ(1), . . . , ξ(k)}.
For convenience, we denote Π = [σij]i,j=1,2,...,n.

The cost function associated with system (1) is

J = E


∞
k=0


xT (k)Qx(k) + uT (k)Ru(k)


, (2)

where E is the mathematical expectation over the noise {ξ(0),
ξ(1), . . .}, the weighting matrix R is positive definite and the
matrix Q is non-negative definite.

Problem. Find the state feedback input sequences {u(k), k =

0, 1, . . . ,∞} in which u(k) is Fk−1-measurable such that the cost
function J of (2) is minimized.

Remark 1. The state and control-dependent noises can be as-
sumed to be different and correlated with each other in model (1).
For simplicity, we assume that the state and control-dependent
noises are the same, even though the later development and re-
sults can be adapted to the different and correlated case.

Remark 2. If we let ξ1(k) = ξ2(k) = · · · = ξn(k), then system (1)
is given as

x(k + 1) = [A + ξ1(k)A0]x(k) + [B + ξ1(k)B0]u(k). (3)

The model (3) is similar with [6–10]. Considering that ξ1(k) =

ξ2(k) = · · · = ξn(k) is restricted in many practical applications,
the proposed model in our paper is more general. Meanwhile,
the models about discrete-time linear systems with multiplicative
noise in [13,17] are given as

x(k + 1) =


A +

n
i=1

ξi(k)Ai


x(k) +


B +

n
i=1

ξi(k)Bi


u(k). (4)

By decomposing the diagonal noisy matrix as a sum of scalar
multiplicative noise, it follows from system (1) one has

x(k + 1) =


A +

n
i=1

ξi(k)ϵiA0i


x(k)

+


B +

n
i=1

ξi(k)ϵiB0i


u(k). (5)

As such, the LQR problem in this paper can be settled by applying
the existing result in [13,17]. However, due to the appearance of n
correlated scalarmultiplicative noise ξi(k), the results are complex.
Also, note that thematrices ϵiA0i and ϵiB0i are special (the elements
are all zero except for the i row). Motivated by these points, we
want to obtain some simple results by employing the technique of
Hadamard product and Kronecker product flexibly, which have the
similar structure as the results obtained from scalar multiplicative
noise case (3) in [6–10].

For deterministic systems, it is well known that the conditions
of stabilization and observation play crucial role in guaranteeing
the convergence of the standard Riccati equation. Similar to the
deterministic case, we define the stabilization and observation for
multiplicative noise systems in the following.
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