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a b s t r a c t

In this note we obtain a version of the well-known theorem of R. Datko for the notion of the exponential
stability in average. We consider both cocycles over flows as well as cocycles over maps.
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1. Introduction

In the process of extending the Lyapunov operator equation to
the case of autonomous systems x′

= Ax when the operator A is
unbounded, Datko [1] established his famous theorem which as-
serts that the trajectories of a C0-semigroup {T (t)}t≥0 on a Hilbert
space X exhibit an exponential decay if and only if they stay in
L2(R+, X). Since then this theorem became one of the pillars of
the modern control theory and has inspired numerous extensions
and generalizations. In particular, Pazy [2] proved that the conclu-
sion of Datko’s theorem holds if L2(R+, X) is replaced with any
Lp(R+, X) with p ∈ [1, ∞). Furthermore, Datko [3] obtained the
version of his theorem which deals with the exponential stability
of evolution families {T (t, s)}t≥s≥0 which describe solutions of the
variety of differential equations. More precisely, he proved the fol-
lowing result.

Theorem 1. Let {T (t, s)}t≥s≥0 be an evolution family on a Banach
space X. The following statements are equivalent:

(1) there exist D, λ > 0 such that

∥T (t, s)∥ ≤ De−λ(t−s) for t ≥ s ≥ 0;

(2) there exists p ∈ [1, ∞) such that

sup
s≥0


∞

s
∥T (t, s)x∥p < ∞ for each x ∈ X .
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The first results related to discrete-time evolution families are
due to Zabczyk [4].

A major improvement of this ideas is due to Rolewicz [5]
who characterized exponential stability of evolution families in
terms of the existence of appropriate functions N of two real
variables (see [6] for details and further discussion). This approach
unified and extended many of the previously known results. The
most recent contributions [6,7] deal with obtaining the version of
Datko’s theorem for the notion of nonuniform exponential stability
which was introduced by Barreira and Valls (see [8]). Moreover,
in [9] the authors have obtained a certain ergodic version of Datko’s
theorem.

The main purpose of the present paper is to obtain a version
of Datko’s theorem for the notion of an exponential stability in
average which is a particular case of a more general notion of
an exponential dichotomy in average introduced in [10,11] for
discrete and continuous time respectively. This notion essentially
corresponds to assuming the existence of uniform contraction
and uniform expansion along complementary directions but
now in average, with respect to a given probability measure.
We emphasize that this notion includes the classical concepts
of uniform exponential dichotomy (and thus also of uniform
exponential stability) as particular cases.

The paper is organized as follows. In Section 2 we recall some
basic notions and the concept of an exponential stability in average.
In Section 3 we prove the version of Datko’s theorem for cocycles
over semiflows. Then, in Section 4 we do the same but for cocycles
over maps. Finally, in Section 5 we imply those results to the study
of the persistence of the notion of the exponential stability in
average under small linear perturbations.
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2. Preliminaries

We begin by recalling some well-known notions. Let Ω =

(Ω, B, µ) be a probability space. Ameasurablemapϕ : R+

0 ×Ω →

Ω is said to be a semiflow on Ω if:

(1) ϕ(0, ω) = ω for ω ∈ Ω;
(2) ϕ(t + s, ω) = ϕ(t, ϕ(s, ω)) for t, s ≥ 0 and ω ∈ Ω .

For each t ≥ 0 we can consider the map ϕt : Ω → Ω given by
ϕt(x) = ϕ(t, x), x ∈ Ω . Moreover, let X be a Banach space and let
L(X)denote the set of all invertible bounded linear operators acting
on X . A strongly measurable map Φ : R+

0 ×Ω → L(X) (this means
that (t, ω) → Φ(t, ω)x is Bochner measurable for each x ∈ X) is
said to be a cocycle over ϕ if:

(1) Φ(0, ω) = Id for ω ∈ Ω;
(2) Φ(t + s, ω) = Φ(t, ϕs(ω))Φ(s, ω) for t, s ≥ 0 and ω ∈ Ω .

Example 1. In the particular case when the map t → Φ(t, ω)x is
of class C1 for eachω and x the cocycle can be described as follows.
Let

A(ω) =
d
dt

Φ(t, ω)

t=0.

One can easily verify that the unique solution of the problem

x′
= A(ϕt(ω))x, x(0) = x0

is then given by x(t) = Φ(t, ω)x0. Note that under the above
assumption themap t → A(ϕt(ω))x is continuous for eachω and x.

Before proceeding, we emphasize that cocycles (over maps and
flows) arise naturally in the study of nonautonomous dynamics.
For example, smooth ergodic theory builds around the study
of the derivative cocycle associated either to map or a flow
(see Sections 5 and6 in [12]).Moreover, cocycles describe solutions
of variational equations and Cauchy problems with unbounded
coefficients (we refer to Chapter 6 of [13] for detailed discussion).
Finally, the notion of a cocycle arises from stochastic differential
equations (see Chapter 2 in [14] for details).

Let F denote the Banach space of all Bochner measurable
functions, sometimes simply referred to as measurable functions,
z : Ω → X such that

∥z∥1 :=


Ω

∥z(ω)∥ dµ(ω) < ∞,

identified if they are equal to µ-almost everywhere (we note that
F is simply the set of all Bochner integrable functions identified
if they are equal to µ-almost everywhere, sometimes denoted by
L1

µ(Ω, X)). Given a cocycle Φ over a semiflow ϕ, we shall always
assume that there exist K , a > 0 such that

Ω

∥Φω(t, τ )z(ω)∥ dµ(ω) ≤ Kea|t−τ |


Ω

∥z(ω)∥ dµ(ω) (1)

for z ∈ F and t, τ ≥ 0, where

Φω(t, s) = Φ(t, ω)Φ(s, ω)−1.

We now introduce the concept of exponential stability in
average.We say that the cocycleΦ is exponentially stable in average
if there exists D, λ > 0 such that

Ω

∥Φω(t, s)z(ω)∥ dµ(ω) ≤ De−λ(t−s)


Ω

∥z(ω)∥ dµ(ω), (2)

for z ∈ F and t ≥ s ≥ 0. This notion is a particular case of a
more general notion of exponential dichotomy inmean introduced
in [11]. We recall that a cocycle Φ is said to admit an exponential
dichotomy in average if there exist projections Pτ : F → F for τ ≥ 0
such that:

(1) for each t, τ ≥ 0 and z, z̄ ∈ F such that z̄(ω) = Φω(t, τ )z(ω)
for µ-almost every ω ∈ Ω , we have

(Pt z̄)(ω) = Φω(t, τ )(Pτ z)(ω) (3)

for µ-almost every ω ∈ Ω;
(2) there exist constants D, λ > 0 such that for each z ∈ F, we

have
Ω

∥Φω(t, s)(Psz)(ω)∥ dµ(ω)

≤ De−λ(t−s)


Ω

∥z(ω)∥ dµ(ω) (4)

for t ≥ s and
Ω

∥Φω(t, s)(Qsz)(ω)∥ dµ(ω)

≤ Deλ(t−s)


Ω

∥z(ω)∥ dµ(ω) (5)

for t ≤ s, where Qs = Id − Ps.

We note that when Pt = Id, the condition (4) reduces to (2)
(while (3) and (5) became trivial) and we recover the notion of
exponential stability in average.

Example 2. Any uniformly hyperbolic cocycle admits an exponen-
tial dichotomy in average. We recall that a cocycle Φ is uniformly
hyperbolic if there exist projections P̃t : X → X for t ∈ R such that:

(1) for each t, τ ≥ 0 and ω ∈ Ω , we have

PtΦω(t, τ ) = Φω(t, τ )Pτ ;

(2) there exist constants D, λ > 0 such that for each ω ∈ Ω , we
have

∥Φω(t, τ )P̃τ∥ ≤ De−λ(t−τ)

for t ≥ τ and

∥Φω(t, τ )Q̃τ∥ ≤ Deλ(t−τ)

for t ≤ τ , where Q̃t = Id − P̃t .

Defining projections Pt : F → F for t ∈ R by

(Ptz)(ω) = P̃t(z(ω)),

we find that each uniformly hyperbolic cocycle admits an
exponential dichotomy in average with respect to any probability
measure µ on Ω .

The previous example shows that the notion of an exponential
dichotomy in average includes the classical notion of uniform
hyperbolicity as a particular case.

Example 3. Now we describe examples of cocycles that admit
an exponential dichotomy in average but that are not uniformly
hyperbolic. Consider a partition Ω =

N
i=0 Ωi of Ω (N may be

finite or infinite) with µ(Ω0) = 0 and numbers λ0 = 0 and λi > 0
for i ∈ N with infi∈N λi > 0. We assume that

Ωi

∥Φω(t, s)(Psz)(ω)∥ dµ(ω) ≤ De−λi(t−s)


Ωi

∥z(ω)∥ dµ(ω)

for t ≥ s and
Ωi

∥Φω(t, s)(Qsz)(ω)∥ dµ(ω) ≤ Deλi(t−s)


Ωi

∥z(ω)∥ dµ(ω)

for t ≤ s, for all z ∈ F and i ∈ N0 ∩ [0,N]. Then the cocycle admits
an exponential dichotomy in average. If the set Ω0 is nonempty,
then the cocycle is not uniformly hyperbolic. For example, the set
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