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a b s t r a c t

A pair of 2-by-2 matrices can be transformed into the joint forms, which are bound together via an
invariant that measures the deformation of their structures with respect to each other. With this, we
obtain an approximation of the joint spectral radius of such a pair of matrices from above and then apply
it to assessing stability for planar discrete-time linear switching systems.
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1. Introduction

Consider the planar discrete-time linear switching system
described as follows

x(k + 1) = Aσ(k)x(k), x ∈ R2, (1)

where σ is the switching function assumed in {1, 2} to decide
which one of the two subsystems to be switched into activity at
each time. System (1) is said to be globally uniformly asymptoti-
cally stable if limk→∞ |x(k; x0)| = 0 for any initial state x0 and any
switching function.

The stability problem for planar linear switching systems in
continuous-time is the easiest and thus the most understood issue
in the research area of switching systems. One of the fruitful results
is the characterization on the most unstable trajectory yielded by
switching, which is defined in the sense that, at each point on
it, it gets away from the origin as far as possible; see, e.g., [1].
Whereas, the analogy in discrete-time remains challenging. From
the perspective of optimal control theory, the reason lies in that
it fails to characterize the most unstable trajectory in such a way
that it has successfully done in the continuous-time case. Yet the
joint spectral radius of a finite family of matrices provides us with
a framework to look at the problem, which is defined by

ρ̂(A1, A2) = lim
k→∞

sup
σ

∥Aσ(k−1) · · · Aσ(1)Aσ(0)∥
1
k , (2)
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where Aσ(k−1) · · · Aσ(1)Aσ(0) is the transition matrix of system (1)
for a given switching path σ and the maximization is taken over
all possible switching paths. The maximal Lyapunov exponent of
system (1) turns out to be the logarithm of the joint spectral radius
of {A1, A2}; see [2–4]. Namely,

sup
x0≠0

lim sup
k→∞

ln |x(k; x0)|
k

= ln ρ̂(A1, A2).

Then, system (1) is stable if and only if ρ̂(A1, A2) < 1.
Apart from the stability problem concerned here, joint spectral

radius is central to a variety of applications; see [5]. However,
computing joint spectral radius is an NP-hard problem. Naturally,
it has attracted great efforts to characterize the joint spectral
radius theoretically or to approximate its truth value at the
expense of computational complexity. In particular, its equivalent
descriptions can be found in [6] and the references therein. It is
worth mentioning that a second-order variational criterion has
been derived in [7], which allows to follow such a switching path
step by step that maximizes the right-hand side of (2). And the
maximization can be achieved because adjusting the switching
path in discrete-time can make the spectral radius of the resultant
transition matrix continuously vary; see [8].

On the other hand, some methods to study the joint spectral
radius are geometric in nature, to which the constructions of
special vector norms and their unit balls are central; see, e.g., [9,10].

The aim of this paper is to present a practical upper bound for
ρ̂(A1, A2), which remains invariant for changing coordinates, and
then use it to assess stability. Such a bound indeed has various
potential applications, but obtaining it in general is challenging;
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see [11,12]. Our results are derivedmainly based on the joint forms
of A1 and A2, which enable us to capture the deformation of their
structures with respect to each other.
Notation: We shall use the following notations. Let ∥X∥, det(X),
tr(X), ρ(X) be the 2-norm, determinant, trace, and spectral radius
of matrix X , respectively. Then, ∆X = tr(X)2 − 4 det(X) is the
discriminant of the characteristic polynomial of a 2-by-2 matrix
X . Let [X, Y ] be the Lie commutator of X and Y . Besides, we write j
and ⌊s⌋ for the imaginary unit and the greatest integer no greater
than s, respectively.

2. Main results

Without loss of generality, throughout the paper we assume
ρ(A1) ≥ ρ(A2) and ∆A1∆A2 ≠ 0. We now introduce the following
invariant

KA1A2 = 2
tr(A1A2) −

1
2 tr(A1)tr(A2)

|∆A1∆A2 |
, (3)

which contains important information about A1 and A2; see
[13,14]. A basic fact about KA1A2 is the following.

Lemma 1 ([14]).

det([A1, A2]) =


1
4


1 − K2

A1A2


∆A1∆A2 , ∆A1∆A2 > 0

1
4


1 + K2

A1A2


∆A1∆A2 , ∆A1∆A2 < 0.

In particular, det([A1, A2]) > 0 implies |KA1A2 | < 1 and∆A1 , ∆A2 >
0, and ∆A1 , ∆A2 < 0 implies |KA1A2 | ≥ 1.

With the construction of KA1A2 , Balde, Boscain, and Mason
proved the following results, which are key for our study.

Lemma 2 ([15]). If det([A1, A2]) > 0, then there is a linear change
of coordinates, which converts A1 and A2 into the following joint forms

1
2


tr(A1)


∆A1

∆A1 tr(A1)


, (4)

1
2


tr(A2) + K̂A1A2


∆A2 KA1A2


∆A2

KA1A2


∆A2 tr(A2) − K̂A1A2


∆A2


, (5)

where K̂A1A2 =


1 − K2

A1A2
.

Lemma 3 ([15]). If det([A1, A2]) < 0, then there is a linear change
of coordinates, which converts A1 and A2 into the following joint forms

1
2


tr(A1)


|∆A1 |

sgn(∆A1)


|∆A1 | tr(A1)


, (6)

1
2

 tr(A2)
sgn(∆A2)

F


|∆A2 |

F


|∆A2 | tr(A2)

 , (7)

where F ∈ R satisfies |F | ≥ 1 and

F +
sgn(∆A1∆A2)

F
= 2KA1A2 . (8)

Since joint spectral radius is independent of a particular choice
of coordinates, hereafter we tacitly suppose that A1 and A2 are
in the joint forms of (4) and (5) (resp., (6) and (7)) when
det([A1, A2]) > 0 (resp., < 0).

Let

Λi = diag{λi
1, λ

i
2}, (9)

where λi
1,2 denote the eigenvalues of Ai, namely,

λi
1,2 =


1
2
(tr(Ai) ±


∆Ai), ∆Ai > 0

1
2
(tr(Ai) ± j


−∆Ai), ∆Ai < 0.

The change of coordinates that renders Ai diagonal is represented
by Vi, i.e., Λi = V−1

i AiVi.

Lemma 4. There exist V1 and V2 constructed such that

∥V−1
1 V2∥ ∥V−1

2 V1∥ =


1, det([A1, A2]) > 0
|F |, det([A1, A2]) < 0. (10)

Its proof is postponed to Appendix.

Remark 1. As will be seen in proving Proposition 1, ∥V−1
1 V2∥

∥V−1
2 V1∥ actually accounts for the accumulation of the overshoots

yielded by changing subsystems successively. In this sense, when
det([A1, A2]) > 0, there is no such overshoot at all.

Proposition 1. Assume det([A1, A2]) < 0. If |F | ≤
ρ(A1)
ρ(A2)

, then

ρ̂(A1, A2) = max{ρ(A1), ρ(A2)}. (11)

If |F | >
ρ(A1)
ρ(A2)

, we have

ρ̂(A1, A2) ≤


ρ(A1)ρ(A2)|F |. (12)

Proof. Given a switching law σ , let Nσ (m− 1) denote the number
of changing subsystems up to an instant m − 1, and, moreover,
associate with σ two subsets of {1, 2, . . . ,Nσ (m− 1)}, χσ

1 (m− 1)
and χσ

2 (m − 1), which are composed of the sequence of changing
to the first subsystem and the second one, respectively. Clearly,
they are complementary to each other. To each d ∈ χσ

p (m − 1), a
positive integer ld is assigned to indicate the length of the product
of Ap with itself, namely, Ap is switched into activity at the instantd

i=1 li+1 till the instant
d+1

i=1 li. Given a sufficiently large integer
m, let s = Nσ (m − 1), we have

∥Aσ(m−1) · · · Aσ(1)Aσ(0)∥
1
m = ∥Als

pA
ls−1
3−p · · · Al2

3−pA
l1
p ∥

1
m , (13)

where p equals either 1 or 2 and the integers li ≥ 1 (1 ≤ i ≤ s)
satisfy

s
i=1 li = m. Obviously, s ≤ m and the distributions of

l1, l2, . . . , ls are uniquely determined by the specified σ .
For the sake of statement convenience, with a slight abuse

of notation, we temporally redefine A1 = A1/ρ(A1) and A2 =

A2/ρ(A1). Since K(α1A1)(α2A2) = sgn(α1α2)KA1A2 for some scalars
αi, this rescaling does not influence KA1A2 but merely makes the
spectral radii of A1 and A2 equal 1 and ρ(A2)/ρ(A1), respectively.
As a consequence, for the diagonal forms Λ1 and Λ2, which are
described as in (9), one has that

∥Λ1∥ = 1 and ∥Λ2∥ = ρ(A2)/ρ(A1). (14)

Combining (10) and (14), from (13) we further deduce that

∥Aσ(m−1) · · · Aσ(1)Aσ(0)∥
1
m

= ∥(VpΛ
ls
pV

−1
p )(V3−pΛ

ls−1
3−pV

−1
3−p) · · · (VpΛ

l1
p V

−1
p )∥

1
m

= ∥VpΛ
ls
p (V

−1
p V3−p)Λ

ls−1
3−p(V

−1
3−pVp) · · · (V−1

3−pVp)Λ
l1
p V

−1
p ∥

1
m

≤ c
1
m

 
i∈χσ

1 (m)

∥Λ
li
1∥


i∈χσ

2 (m)

∥Λ
li
2∥

 1
m
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