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a b s t r a c t

We consider a class of non-linear dynamics on a graph that contains and generalizes various models
from network systems and control and study convergence to uniform agreement states using gradient
methods. In particular, under the assumption of detailed balance, we provide a method to formulate the
governing ODE system in gradient descent form of sum-separable energy functions, which thus represent
a class of Lyapunov functions; this class coincides with Csiszár’s information divergences. Our approach
bases on a transformation of the original problem to amass-preserving transport problem and it reflects a
little-noticed general structure result for passive network synthesis obtained by B.D.O. Anderson and P.J.
Moylan in 1975. The proposed gradient formulation extends known gradient results in dynamical systems
obtained recently by M. Erbar and J. Maas in the context of porous medium equations. Furthermore,
we exhibit a novel relationship between inhomogeneous Markov chains and passive non-linear circuits
through gradient systems, and show that passivity of resistor elements is equivalent to strict convexity of
sum-separable stored energy. Eventually, we discuss our results at the intersection of Markov chains and
network systems under sinusoidal coupling.

© 2016 Elsevier B.V. All rights reserved.

1. Motivation

Gradient methods provide an elegant way to physics motivated
modeling [1,2] and are closely linked to passivity theory and the
circuit concept [3,4]. They are a basic tool in studying anddesigning
non-linear systems on a graph, e.g., in distributed optimization [5]
or in multi-robot problems such as coverage or formation control,
cf., e.g., [6,7], and references therein.

Another pillar in network system studies is the classical
consensus problem [8]. An equivalence between the dynamics
(trajectories) of Markov chains and consensus networks has
been source of recent advances in consensus theory [9]. For LTI
symmetric consensus networks such an equivalence has been
linked to the averaging dynamics of unit capacitor RC circuits
in [6, chap. 3]. Within the mathematics community, a static
relationship is usually considered between Markov chains and
electric circuits (resistor networks) [10]. The static (algebraic)
circuit equations due to Kirchhoff and Ohm in fact are known
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to serve as generic structure underlying various scientific and
computational problems, see, e.g., [11, chap. 2].

Gradient formulations of Markov chains using sum-separable
energy functions have been of recent interest in dynamical and
non-linear systems [12–15]. Interestingly, sum-separability of
energy is an axiom in interconnected dissipative systems [4] and
has origins in the circuit concept.

In this paper we bring these various concepts together in
novel ways, based on a gradient structure for a class of non-
linear dynamics on a graph that covers a wide range of prominent
network system problems.

2. Problem description and related literature

Let G = (N, B, w) be a weighted directed graph, where N =

{1, 2, . . . , n} is the set of nodes, B = {1, 2, . . . , b} ⊆ N × N
denotes the set of branches whose elements are ordered pairs
(j, i) denoting an edge from node j to i, and w : B → R>0 is a
weighting function, such that w((j, i)) =: wij, if (j, i) ∈ B, else
wij = 0. Associated to a graph is the Laplace matrix L, defined
component-wise as [L]ij = −wij, [L]ii =


jwij. For strongly

connected graphs, denote the positive left-eigenvector associated
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to the unique zero eigenvalue of the Laplacian by c , and define
C := diag{c1, c2, . . . , cn}.

An important generalization of the symmetry condition on
Laplacians that L = L⊤ is the particular type-symmetry that for
some C, and i, j ∈ N ,

ciwij = cjwji ⇔ CL = L⊤C. (1)

Eq. (1) is known in the literature on Markov chains as detailed
balance, or as reversibility w.r.t. c , cf., [16, chap. 2].

We consider the general class of dynamics on a graph G
described component-wise by an ODE of the type

ẋi =


j:(j,i)∈B

wij φ(xj, xi), i ∈ N, (2)

whereφ(·, ·) is Lipschitz continuous,φ(a, b) negative if a < b, zero
iff a = b, positive if a > b, and |φ(a, b)| is increasing if |a − b| is
increasing.

The class (2) includes many known network models: The usual
linear consensus system [8] is obtained from setting φ(xj, xi) =

xj−xi. Ifφ(xj, xi) = f (xj−xi)(xj−xi), with f (z) = f (−z) > 0, then,
the ODE (2) describes a continuous-time opinion dynamics [17].
For instance, onemay choose f (z) = | tanh(p·z)|, p > 0, which is a
good choice formodeling saturation phenomena in the interaction.
If φ(xj, xi) = ψ(xj − xi), ψ(z) = −ψ(z), then we recover the
non-linear consensus class introduced by Olfati-Saber and Murray
in [18], with ψ = sin a prominent instance. Beyond the presented
known interaction types, our model also includes couplings of the
form φ(xj, xi) = g(xj) − g(xi), where g is an increasing function,1
e.g., ln(x), ex, xp, p > 0, on the respective domain of definition.
The latter interaction type covers a discrete version of an equation
system that models the non-linear diffusion of a gas in porous
media, see [12] (and [19] for the continuous context).

From an operational point of view,we are interested in bringing
the ODE system (2), under the assumption of detailed balance, into
the gradient form

q̇ = −K(q)∇E(q), (3)

where q is a suitable transform of the original state x, K(·) is a
symmetric, positive semi-definitematrix function that inherits the
sparsity structure of the graph G, and E(q) is a sum-separable
Lyapunov function.

This structure defines gradient descent systems living on
subspaces of Rn, where −∇E(·) · K(·)∇E(·), describing locally the
dissipation rate of E, is negative definite. In the context of gradient
systems this structure is quite particular, aswe impose the sparsity
constraint given by G, require sum-separability of the potential E,
and do not require positive definiteness of the inverse metric K;
these constraints are not usual from a classical gradient system
point of view, cf., e.g., [20], but turn out to be elementary in a
passive circuits context.

For particular cases of graph weightings and functions φ,
gradient structures for the class (2) have been established: For
symmetric consensus systems, (i.e. L = L⊤, φ(xj, xi) = xj − xi), it
is well known that the network dynamics are a gradient descent of
the (non-sum-separable) interaction potential 1

2x
⊤Lx, see, e.g., [8].

In [21] a port-Hamiltonian view as gradient descent of the sum-of-
squares energy 1

2


i∈N x2i is presented. Under the less restrictive

assumption of detailed balance weightings, the linear system
dynamics (understood as Markov chain) has been formulated
as gradient descent of free energy, resp. of relative entropy, in
the works [15,14]. In [12], for systems with detailed balance
weighting, and φ(xj, xi) = g(xj) − g(xi), g increasing, a smooth

1 Or φ(xj, xi) = l(xi)− l(xj), where l is a decreasing function.

gradient descent structure is presented for sum-separable energies
i∈N ciH(xi), H being strictly convex and smooth on R>0. For

the particular non-separable interaction case of having sinusoidal
coupling, but symmetric weighting, gradient flow structures are
represented, e.g., in [22] or [23], where energy functions however
are non-separable.

In the following we solve the general gradient representation
problem and motivate the proposed structure requiring sum-
separable energy functions from a passivity and circuit systems
viewpoint.

3. Gradient representation

With the following result we provide a procedure to bring a
dynamics (2) into the form (3). By that we characterize a family
of sum-separable Lyapunov functions characterizing asymptotic
stability of agreement states, i.e., states where all components are
equal.

Theorem 1. Consider a network system dynamics governed by the
protocol (2) on a strongly connected graph G such that detailed
balance (1) holds for some C. Define the new state q := Cx, and
consider the sum-separable function

E(q) :=


i∈N

ciH(c−1
i qi), (4)

where H : R → R is any C 2-function, and set h(z) :=
dH(z)
dz . If H is

strictly convex, then the system can be represented as

q̇ = −K(q)∇E(q),

where K(·) is defined as the irreducible and symmetric Laplace matrix
having components

[K]ij :=


−ciwij

φ(xj, xi)
h(xj)− h(xi)

if j ≠ i,

−

n
k=1,k≠i

[K]ik if i = j.

The function (4) is a Lyapunov function establishing asymptotic
stability of the equilibrium point x∞1, with equilibrium value the
weighted arithmetic mean x∞ =


i∈N cixi(0)

i∈N ci
.

Proof. First, we observe that by the chain rule with c−1
i qi = xi,

∂

∂qi
E(q) = ci

∂H(xi)
∂xi

∂xi
∂qi

= cih(xi)c−1
i = h(xi).

The network dynamics (2) can be written equivalently as

1
ci
ciẋi =


j:(j,i)∈B

wijφ(xj, xi) ⇔ q̇i =


j:(j,i)∈B

ciwijφ(xj, xi).

Expanding by h(xj)− h(xi) yields

q̇i =


j:(j,i)∈B

ciwij
φ(xj, xi)

h(xj)− h(xi)


h(xj)− h(xi)


=


j:(j,i)∈B

[K]ij


∂

∂qj
E(q)−

∂

∂qi
E(q)


⇔q̇ = −K(q)∇E(q),

where we use the identity


j:(j,i)∈B[K]ij = −[K]ii.
Next, we show that the matrix K is a symmetric, irreducible

Laplace matrix. As H is strictly convex and of type C 2, h, as
derivative of H , is an increasing function, i.e., for any two real
numbers a, b, h(a) < h(b), whenever a < b. We observe that
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