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a b s t r a c t

We prove two bounds showing that if the eigenvalues of a matrix are clustered in a region of the complex
plane then the corresponding discrete-time linear system requires significant energy to control. A curious
feature of one of our bounds is that the dependence on the region is via its logarithmic capacity, which
is a measure of how well a unit of mass may be spread out over the region to minimize a logarithmic
potential.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We will consider discrete-time linear systems

x(t + 1) = Ax(t) + Bu(t), (1)

where A ∈ Cn×n and B ∈ Cn×k. Our goal is to understand the
relation between the locations of the eigenvalues of A within the
complex plane and the energy needed to steer Eq. (1) by choosing
the input u(t). We will prove two bounds to the effect that if the
eigenvalues of A are clustered, then Eq. (1) is ‘‘difficult to control’’
in the sense of requiring large inputs to steer between states.

Ourwork is related to a growing body of literature investigating
the control properties of large-scale systems. A strand of this liter-
ature, to which this paper belongs, is to identify the fundamental
limitations for controlling such networks [1–8]. A common con-
cern is control difficulty when n (the number of states) is large; it
has been experimentally observed that in some scenarios themini-
mum control energy grows exponentially as a function of n [8,9]. In
this note, we will study how eigenvalue locations of A in the com-
plex plane can sometimes be a de-facto obstacle to efficient control
for systems with many states.

It is textbook material that the energy needed to steer a linear
system is related to the smallest eigenvalue of the controllability
Gramian, and we spell this out before describing the problem
and our results. Given initial state x0 and final state xf, we let
E(A, B, x0 → xf, t) be the minimal energy

t−1
i=0 ∥u(i)∥2

2 among all
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inputs which result in x(t) = xf starting from x(0) = x0. We then
use this notion to define the ‘‘difficulty of controllability’’ of a linear
systemby considering theworst-case energy needed tomove from
the origin to a point on the unit sphere, i.e.,

E(A, B, t) := sup
∥y∥2=1

E(A, B, 0 → y, t).

We will allow both sides to be infinite if there is a vector y
on the unit sphere which cannot be reached with any choice of
u(0), . . . , u(t − 1). This is not the only way to formalize the
difficulty of controllability of a linear system (for example, one
might also consider the expected energy tomove to a randompoint
on the unit sphere) but it is among the most natural. Defining the
t-step controllability Gramian as

W (t) :=

t
i=0

AiBB∗(A∗)i, (2)

basic linear algebra then gives that

E(A, B, t) =
1

λmin(W (t − 1))
,

whereλmin(W (t−1)) is the smallest eigenvalue of the nonnegative
definite matrixW (t − 1).

Thus the question of how difficult a system is to control
(in a certain worst-case sense) reduces to the analysis of the
smallest eigenvalue of the controllability Gramian. The study of
that eigenvalue is the subject of this note.

We are motivated by a recent result of [5] which showed that
if A is a diagonalizable matrix withm eigenvalues within the circle
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X = {z | |z| ≤ µ < 1}, then the smallest eigenvalue of W (t) for
any t is upper bounded by a product of two terms one of which is
µ2(⌈m/k⌉−1)/(1 − µ2) (where recall k is the number of columns of
B). In other words, ifm is large enough compared to k and µ is not
close to 1, then the smallest eigenvalue of W (t) is exponentially
close to zero.

Our goal here is to produce similar results for other sets X,
especially those which are not contained within the interior of
the unit circle. In this case we will not be able to obtain bounds
on λmin(W (t)) for all t , but we will be able to upper bound this
eigenvalue for some concrete choices of time t .

1.1. Related work

As already mentioned, the main motivating work for the
present paper is [5], which was the first (to our knowledge) to ob-
tain results connecting eigenvalue clustering to lower bounds on
control energy. Follow-upwork included [7], which studied the re-
lation between the difficulty of controllability and the propagation
of inputs by the system in various directions, and [6] which studied
connections to measures of centrality such as PageRank.

The existence of small eigenvalues of the discrete-time control-
lability Gramian appears to have not attracted significant attention
in the existing control literature beyond the above papers. In con-
tinuous time, results on the condition number (which is the ratio
of the largest and smallest eigenvalue of the Gramian) in the case
when A is stable have been derived [10], as well as more general
results on ratios of eigenvalues [11,12].

Our work is also related to a series of recent preprints analyzing
properties of eigenvalues of the Gramian of linear [2–4] and bilin-
ear [1] systems. These papers studied the efficiency of algorithms
for placement of sensors and actuators, as well as the underlying
properties of the Gramian that allow for efficient approximation
algorithms.

1.2. Our results

This note has twomain results. The first concerns control energy
at the first time the system can become controllable, namely at
time

tmin := ⌈n/k⌉ − 1,
where ⌈x⌉ is the smallest integer which is at least x and k, recall,
is the number of columns of B. It is immediate that if t < tmin,
then W (t) is singular because there are not enough columns for
the controllability matrix to be full-rank. Our first result shows
that if the eigenvalues of A lie in a set with logarithmic capacity
(to be formally defined later) smaller than one, then W (tmin) has
an eigenvalue upper bounded by something that decays to zero
exponentially fast in tmin.

Our second result considers A which are Hermitian with m
eigenvalues which are stable (i.e., which lie in [−1, 1]). Roughly
speaking, we show that if t = O

m
k

2−ϵ


for1 some ϵ > 0,
the controllability GramianW (t) has an eigenvalue which is upper
bounded by a quantity that goes to zero as m/k → +∞. For ex-
ample, if t = O


(m/k)3/2


, our result gives the bound λmin (W (t))

= O

(m/k)3/2 e−

√
m/k

in this case.

The formal statements of these results are a little involved
and will be given within the body of this paper. We conclude
our summary by illustrating their use on some simple examples.
Suppose x(t+1) = Ax(t)+bu(t)where A ∈ Cn×n is diagonalizable
as VAV−1

= D and b ∈ Rn×1 is a vector of unit norm. Then:

1 We use the standard O-notation, i.e., the statement f = O(g) where f and g are
positive quantities denotes the existence of a constant C such that f ≤ Cg .

• If the eigenvalues of A are contained within any equilateral
triangle of side length 2 in the complex plane, then there is some
n0 such that for all n ≥ n0, we have

λmin (W (n − 1)) ≤ ∥V∥
2
2∥V

−1
∥
2
2 · 0.133n. (3)

By contrast, if all the eigenvalues are contained within a circle
in the complex plane of the very same area as this equilateral
triangle, our methods give the bound

λmin (W (n − 1)) ≤ ∥V∥
2
2∥V

−1
∥
2
2 · 0.552n, (4)

once again for n large enough.
• Suppose n = 10,000 and A is a Hermitian matrix at least half

of whose eigenvalues are stable. It turns out that this is enough
information to conclude that

λmin(W (250,000)) ≤ 1.03 × 10−37 (5)

λmin(W (1,000,000)) ≤ 1.58 × 10−4. (6)

In other words, the presence of many stable modes appears to
be a significant obstacle to the efficient control of Hermitian
systems.

1.3. Organization of this paper

We conclude the introduction with Section 1.4 which intro-
duces some notation as well as some background facts which we
will draw on throughout this paper. Section 2 is dedicated to prov-
ing our first main result, namely the bound on W (tmin) in terms
of logarithmic capacity. Section 3 proves our second main result,
which bounds the eigenvalues of W (t) for a range of times t in
the special case when the matrix A is Hermitian with many stable
eigenvalues. We end with some concluding remarks in Section 4.

1.4. Notation and background

We first describe some notation thatwewill use for the remain-
der of the paper. We use the standard notation ol(1) to denote any
function of l that goes to zero as l → +∞. Given amatrixV , its con-
dition number is defined as cond(V ) := ∥V∥2∥V−1

∥2. The Frobe-
nius norm of V is denoted as ∥V∥F . As is standard, V ∗ will denote
the conjugate transpose of V and V will denote its (elementwise)
complex conjugate. We will use Pj to denote the set of univariate
polynomials with complex coefficients of degree at most j, and P ′

j

to denote the set of monic2 univariate polynomials with complex
coefficients of degree j.

Given a compact set K in the complex plane, let µK be the
set of probability measures on K , i.e., the set of Borel measures
µ supported on K which satisfy µ(K) = 1. We then define I(K),
called the logarithmic energy of the set K , as

I(K) := sup
µ∈µK


K×K

log |z − w| dµ(z) dµ(w).

The logarithmic capacity is then defined as

cap(K) := eI(K).

Logarithmic capacity comes up in our results due to its con-
nection with polynomial approximation, which we now describe.
Given a set X ⊂ C, we define

Err(l, X) := min
p∈Pl−1

max
z∈X

z l − p(z)
 . (7)

2 Meaning the coefficient in front of the highest power is one.
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