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a b s t r a c t

We propose a new diffeomorphic matching algorithm and use it to learn nonlinear dynamical systems
with the guarantee that the learned systems have global asymptotic stability. For a given set of demon-
stration trajectories, and a reference globally asymptotically stable time-invariant system, we compute
a diffeomorphism that maps forward orbits of the reference system onto the demonstrations. The same
diffeomorphism deforms the whole reference system into one that reproduces the demonstrations, and
is still globally asymptotically stable.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We consider the problem of learning dynamical systems (DS)
from demonstrations. More precisely, given a list of trajectories
(xi(t)) observed as timed sequences of points inRd, the objective is
to build a smooth autonomous system ẋ = f (x) (i.e. a vector field)
that reproduces the demonstrations as closely as possible.

The ability to construct suchDS is an important skill in imitation
learning (see for example [1]). The learned systems can be used as
dynamical movement primitives generating goal-directed behav-
iors [2].

Modeling movement primitives with DS is convenient for
closed loop implementations, and their generalization to unseen
parts of the state space provides robustness to spatial perturba-
tions. Moreover, the choice of autonomous (i.e. time-invariant)
systems, while not always suitable or preferable, is interesting in
many situations as they are inherently robust to temporal pertur-
bations.

The most common movement primitives consist of motions
that converge towards a single targeted configuration. They
correspond to globally asymptotically stable DS. But classical
learning algorithms cannot provide the guarantee that their
output is always globally asymptotically stable. They might
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produce DS with instabilities or spurious attractors. This issue
has recently been studied by Khansari-Zadeh and Billard [3,4]
who proposed several approaches to learn globally asymptotically
stable nonlinear DS. One of the main ideas they investigated
consists in learning a Lyapunov function candidate (or simply
Lyapunov candidate1) L that is highly compatible with the
demonstrations in the following sense: at almost every point
xi(tj), the estimated or measured velocity vi(tj) is such that
its scalar product with the gradient of L is negative: vi(tj) ·

∇L(xi(tj)) < 0. Once L is found, a learning algorithm optimizes
a weighted sum of DS that admit L as a common Lyapunov
function, therefore ensuring the global asymptotic stability of the
resulting DS. Alternatively, L can be used to modify movement
primitives by correcting trajectories whenever they would violate
the compatibility condition.

The main limitation of this method comes from the difficulty
to find good Lyapunov candidates. In SEDS (Stable Estimator
of Dynamical Systems), one of the first algorithms proposed by
Khansari-Zadeh and Billard, the Lyapunov function is set to be
the l2-norm squared (∥ · ∥

2), which means that all trajectories
produced by the learned DS are such that the distance to the
target is monotonically decreasing. In their more recent algorithm
CLF-DM (Control Lyapunov Function-based Dynamic Movements),

1 In this paper (cf. Definition 1), a Lyapunov function candidate is a C1 function
from Rd to R≥0 , radially unbounded, taking the value 0 at a target point x∗ andwith
no other local extremum. We generally assume x∗

= 0.
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the search for a Lyapunov candidate is done among a set called
Weighted Sums of Asymmetric Quadratic Functions (WSAQF).
It highly increases the set of DS that can be learned, but the
restrictions remain significant as the search is limited to a small
convex subset of the set of Lyapunov candidates.

To go further, Neumann and Steil [5] suggested to initially com-
pute a Lyapunov candidate with the abovemethod, and then apply
a simple diffeomorphism (of the form x → η(x)x, with η(x) ∈

R≥0) that deforms the space and transforms the Lyapunov candi-
date into the function x → ∥x∥2, thus simplifying the trajectories
of the demonstrations. In the deformed space, an algorithm like
SEDS is then more likely to learn a globally asymptotically stable
DS that reproduces faithfully the demonstrations.

In this paper, we propose a more direct diffeomorphism-based
approach. Our contribution is twofold.

• First, we introduce a new algorithm for diffeomorphicmatching
(Sections 2 and 3) and show from experimental comparisons
that it tends to be one or two orders of magnitude faster than a
state-of-the-art algorithm.

• Then, we explain how it can be used to directly map simple
trajectories of a DS like ẋ = −x onto the trajectories of the
training data (Section 4). This gives a new way to generate
Lyapunov candidates as well as globally asymptotically stable
smooth autonomous systems reproducing the demonstrations.

The most direct applications of this work are in motor control
and robotics, but we believe that learning globally asymptotically
stable nonlinear DS and computing Lyapunov candidates can be
useful for various types of systems and control design problems.

2. Diffeomorphic locally weighted translations

Given a smooth (symmetric positive definite) kernel function
kρ(x, y), depending on some parameter ρ, such that ∀x, kρ(x, x) =

1 and kρ(x, y) → 0when ∥y−x∥ → ∞, given a ‘‘direction’’ v ∈ Rd

and a ‘‘center’’ c ∈ Rd, we consider the following locally weighted
translation:

ψρ,c,v(x) = x + kρ(x, c)v.

Theorem 1. If ∀(x, y) ∈ Rd
× Rd, ∂kρ

∂x (x, y) · v > −1, thenψρ,c,v is
a smooth (C∞) diffeomorphism.

Proof. For a given x ∈ Rd, let us try to find y ∈ Rd such that
ψρ,c,v(y) = x. This can be rewritten y = x − kρ(y, c)v, so we
know that y must be of the form x + rv. The equation becomes
ψρ,c,v(x + rv) = x, i.e.: rv + kρ(x + rv, c)v = 0. If v = 0, ψρ,c,v is
the identity (and a smooth diffeomorphism), and y = x. Otherwise,
solving ψρ,c,v(y) = x amounts to solving r + kρ(x + rv, c) = 0.

Let us define:

hx : r ∈ R → r + kρ(x + rv, c) ∈ R.

If ∂kρ
∂x (x, c) · v > −1, we get: ∀r ∈ R, dhx

dr (r) > 0. Because of the
absolute monotonicity of hx, and since hx(r) tends to −∞ when r
tends to −∞, and to +∞ when r tends to +∞, we deduce that
there exists a unique sρ,c,v(x) ∈ R such that hx(sρ,c,v(x)) = 0.
It follows that the equation ψρ,c,v(y) = x has a unique solution:
y = x + sρ,c,v(x)v. We conclude that ψρ,c,v is invertible, and:

ψ−1
ρ,c,v(x) = x + sρ,c,v(x)v.

The implicit function theorem can be applied to prove that
sρ,c,v is smooth, and as a consequence ψρ,c,v is a smooth
diffeomorphism. �

With Gaussian Radial Basis Function (RBF) kernel:

We now consider the following kernel (with ρ ∈ R>0):

kρ(x, y) = exp

−ρ2

∥x − y∥2 .
We have:

∂kρ
∂x
(x, y) · v = −2ρ2 exp


−ρ2

∥x − y∥2 (x − y) · v,

with the lower bound:

∂kρ
∂x
(x, y) · v ≥ −2ρ2 exp


−ρ2

∥x − y∥2
∥x − y∥ · ∥v∥.

The expression on the right takes its minimum for ∥x− y∥ =
1

√
2ρ

,
which yields:

∂kρ
∂x
(x, y) · v ≥ −

√
2∥v∥ρ exp


−

1
2


.

We pose ρmax(v) =
1

√
2∥v∥

exp
 1
2


. Applying Theorem 1, v = 0

or ρ < ρmax(v) implies that ψρ,c,v is a smooth diffeomorphism. In
that case, sρ,c,v(x), and as a result ψ−1

ρ,c,v(x), can be very efficiently
computed with Newton’s method.

3. A diffeomorphic matching algorithm

In this section we are interested in the following problem:
given two sequences of distinct points X = (xi)i∈{0,...,N} and
Y = (yi)i∈{0,...,N}, compute a diffeomorphism Φ that maps each
xi onto yi, either exactly or approximately. More formally, defin-
ing dist(A, B) =

1
N+1


i ∥ai − bi∥

2 for two sequences A and B
of N + 1 points, and denoting by Φ(X) the sequence of points
(Φ(xi))i∈{0,...,N}, we want to find a diffeomorphism Φ that mini-
mizes dist(Φ(X), Y).

3.1. State of the art

Since the sequences X and Y can be very different in shape, to
the best of our knowledge the state-of-the-art existing techniques
to solve this problem are based on the Large Deformation
Diffeomorphic Metric Mapping (LDDMM) framework introduced
in the seminal article by Joshi andMiller [6]. Its core idea is to work
with a time dependent vector field v(x, t) ∈ Rd (t ∈ [0, 1]), and
define a flow φ(x, t) via the transport equation:

dφ(x, t)
dt

= v(φ(x, t), t),

with φ(x, 0) = x. With a few regularity conditions on v (see [7]
for specific requirements), x → φ(x, t) is a diffeomorphism. The
resulting diffeomorphismΦ(x) = φ(x, 1) is given by:

Φ(x) = x +

 1

0
v(φ(x, t), t)dt.

Using an appropriate Hilbert space, the vector fields x → v(x, t)
can be associated to an infinitesimal cost whose integration is
interpreted as a deformation energy.

Various gradient descent algorithms have been proposed to
optimize v with respect to a cost that depends both on the
deformation energy and on the accuracy of the mapping, whether
the objective is to map curves [8], surfaces [9], or, as in our case,
points [10].
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