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a b s t r a c t

This paper examines the problem of stabilizing linear distributed delay systems with nonlinear
distributed delay kernels and dissipativity constraints. Specifically, the nonlinear distributed kernel
includes functions such as polynomials, trigonometric and exponential functions. By constructing a
Liapunov–Krasovskii functional related to the distributed kernels, sufficient conditions for the existence
of a state feedback controller which stabilizes the uncertain distributed delay systems with dissipativity
constraints are given in terms of linear matrix inequalities (LMIs). In contrast to existing methods,
the proposed scenario is less conservative or requiring less number of decision variables based on
the application of a new derived integral inequality. Finally, numerical examples are presented to
demonstrate the validity and effectiveness of the proposed methodology.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Among many models of Time Delay Systems (TDS) [1], dis-
tributed delay systems (DDS) cover a wide range of real time ap-
plications [2,3]. For a rigorous treatment and benchmark results on
the frequency domain approaches for linear TDS or DDS, see the
monograph [4] and the references therein. With regards to time
domain approaches, the construction of Liapunov–Krasovskii func-
tional [5] has been adopted as themost commonmethod to under-
take both stability analysis and controller synthesis. In particular,
the Complete Liapunov–Krasovskii Functional (CKLF) [5,6], which
provides both sufficient and necessary stability conditions for a de-
lay system such as ẋ(t) = A1x(t) + A2x(t − r), r ≥ 0, incorpo-
rates most of the existing proposed functionals as special cases.
For a thorough treatise on the fundamental theories of CKLF and
its mathematical derivation, see [6] and references therein.

In contrast to constructing a quadratic function within the
context of semi-definite programming, the decision variables of
CLKF possess infinite dimension which gives rises to significant
difficulties to produce numerical results. In addition, the similar
problems have been encountered in dealing with the non-
constant distributed delay terms. By assuming constant decision
variables with constant distributed delay terms in particular, finite
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dimension constraints can be automatically obtained which leads
to conventional stability conditions denoted by LMIs. There has
been a significant series of literatures on this direction to perform
either stability analysis or controller synthesis for linear DDS
[7–9]. For a collection of the previous works on this topic, see
the monographs [10,11]. On the other hand, the results in [12]
have demonstrated that certain linear DDS can be transformed into
a corresponding system with only discrete delays. However, the
aforementionedmethod inherits obvious conservatisms due to the
presence of additional dynamics required by adding new states.

An alternative synthesis approach, predicated on the discretiza-
tion scheme proposed in [13], is presented in [14] considering
linearDDSwith a piecewise constant distributed delay term.More-
over, by using the application of full-block S-procedure [15], a
novel synthesis result is presented in [16] to tackle systems with
rational distributed delay kernels which are capable of dealing
with general distributed terms via approximations. However, the
derived stabilization conditions require (A, B) to be controllable
in [16] (A is the delay free state spacematrix and B is the input gain
matrix), thereby ensuring the induced conservatisms cannot be ig-
nored. Finally, a systematic way to construct controllers for linear
delay systems, having forwarding or backstepping structures, has
been investigated in [17].

In this paper we propose a method for stabilizing Linear DDS
with nonlinear distributed kernels, which is achieved by construct-
ing a standard complete Liapunov–Krasovskii functional. In ad-
dition, a quadratic supply function [18,11] and uncertainty with
full block constraints [19] having nonconservative assumptions
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are incorporated to provide a broad characterization of both con-
troller objectives and robustness. Furthermore, a new integral in-
equality is derived for the formulation of the synthesis conditions,
which can be considered as a generalization of the recent proposed
Bessel–Legendre inequality [20,21]. By applying the new derived
integral inequality with Projection Lemma [22], convex synthesis
conditions can be derived in terms of LMIs. Unlike existing meth-
ods, the proposed solutionneither requires (A, B) to be controllable
as in [16], nor demand forwarding or backstepping structures as
in [17]. Furthermore, it can produce feasible results without con-
sidering approximations and with less decision variables in com-
parison with the stability analysis results in [23].

The paper is organized as follows. Some important preliminar-
ies and the formulations of the synthesis problem are presented
in Section 2. Section 3 contains the main results relating to con-
troller synthesis. To demonstrate the validity and effectiveness of
proposed methodologies, numerical examples are investigated in
Section 4 before the final conclusion in Section 5.

Notation: The notations in this paper follow standard rules,
though certain new symbolswill be introduced for the sake of com-
pactness: T := {x ∈ R : x ≥ 0}; Sn

:= {X ∈ Rn×n
: X = X⊤

};
Rn×n

[n] := {X ∈ Rn×n
: rank(X) = n}; notations ∥x∥q =n

i=1 |xi|q
 1

q and ||f (·)|̃|p =


R |f (t)|pdt
 1

p and ||f (·)|̃|p|q =
R ∥f (t)∥p

qdt
 1

p are the norms associated with Rn and Lebesgue
integrable functions spaces Lp(R; R) and Lp(R; Rn

∥q), respectively.
C(X; Rn) with supτ∈X ∥f (τ )∥2 is the Banach space of continu-
ous functions with an uniform norm. Sy(X) := X + X⊤ is the
sum of a matrix with its transpose. A column vector containing
a sequence of objects is defined as colni=1xi :=


rown

i=1x
⊤

i

⊤
:=

x⊤

1 · · · x⊤

i · · · x⊤
n

⊤. We use ∗ to denote [∗]YX = X⊤YX or
X⊤Y [∗] = X⊤YX . The direct sum of two matrices and n matri-
ces are defined as X ⊕ Y = Diag(X, Y ),

n
i=1 Xi = Diagn

i=1(Xi),
respectively. Finally, ⊗ indicates the Kronecker product.

2. Preliminaries and problem formulations

Without losing generality, we only consider a system with one
delay channel for the sake of simplicities. However, one can easily
extend the corresponding Krasovskii functional to handle multiple
delay channels simultaneously.

Consider a linear model of DDS

ẋ(t) = A1x(t) + A2x(t − r) + B2w(t)

+

 0

−r

A3(τ )x(t + τ)dτ + B1u(t)

z(t) = C1x(t) + C2x(t − r) + D2w(t)

+

 0

−r

C3(τ )x(t + τ)dτ + D1u(t)

x(τ ) = φ(τ ), ∀τ ∈ O := [−r, 0]R

(1)

to be stabilized, where x(t) ∈ Rn is the solution of (1), u(t) ∈ Rp

denotes input signals, w(·) ∈ L2(T; Rq
∥2) represents disturbance,

z(t) ∈ Rm is the regulated output, and φ(·) ∈ C(O; Rn) denotes
initial condition. Matrices A1; A2;A3(τ ) ∈ Rn×n, C1; C2;C3(τ ) ∈

Rm×n, B1 ∈ Rn×p, B2 ∈ Rn×q, D1 ∈ Rm×p, D2 ∈ Rm×q are given state
space systems parameters with n;m; p; q ∈ N. r ∈ T is a given
constant specifying the length of delay channel. Finally,A3(τ ) andC3(τ ) satisfy the following assumption.

Assumption 1. There exists m(·) ∈ C[1](O; Rρ) with ρ ∈ N and
A3 ∈ Rn×nρ , C3 ∈ Rm×nρ such that ∀τ ∈ O, Rn×n

∋ A3(τ ) =

A3(m(τ ) ⊗ In) and Rm×n
∋ C3(τ ) = C3(m(τ ) ⊗ In). In addition,

m(τ ) satisfies the following properties:

m(τ ) := col
ρ

i=1mi(·),
dm(τ )

dτ
= Mm(τ ), (2)

where M ∈ Rρ×ρ and mi(τ ) are linear independent and that for
all i = 1 · · · ρ there exists an uncountable set P ⊆ O such
that ∀ϑ ∈ P , mi(ϑ) ≠ 0. Similar assumptions can be found
in [24–27].

Remark 1. Specifically, the elements inside of m(τ ) are the solu-
tions of linear homogeneous differential equations with constant
coefficients such as polynomials, trigonometric and exponential
functions. In addition, there is no limitation on the size of the di-
mension of m(τ ) as long as it is able to cover all the elements in
the distributed terms in (1). As for the generality ofm(τ ), there are
many applications canbemodeledby (1) compatiblewithAssump-
tion 1, for example, the compartmental dynamic systems with dis-
tributed delays mentioned in [28]. Furthermore, distributed delay
systems concerning gamma distributions in [16,29] with a finite
delay range can be stabilized by the proposed methods as well.

In this paper, we assume that all states are available for
feedback and (1) is stabilized by a state feedback controller u(t) =

Kx(t) with K ∈ Rp×n. Substituting u(t) = Kx(t) into (1) and
considering Assumption 1 yields

ẋ(t) = Π1x(t) + A2x(t − r)

+

 0

−r
A3M(τ )x(t + τ)dτ + B2w(t)

z(t) = Ω1x(t) + C2x(t − r)

+

 0

−r
C3M(τ )x(t + τ)dτ + D2w(t)

(3)

as the corresponding closed loop system, where Π1 = A1 + B1K
and Ω1 = C1 + D1K and M(τ ) := m(τ ) ⊗ In.

To specify performance objectives for (3), we apply the
quadratic form

s(z(t),w(t)) = −


z(t)
w(t)

⊤

J

z(t)
w(t)


, (4)

with

J =


J−1
1 J2
J⊤2 J3


∈ S(m+q), J−1

1 ≽ 0 (5)

considered in [18] to be the supply rate function.
The supply function in (4) is able to characterize numerous

optimization constraints such as L2 gain control:

sup
w(·)∈L2(T;Rq

∥2)


||z(·)|̃|2|2
||w(·)|̃|2|2


< γ

J1 = γ Im, J3 = −γ Iq, J2 = Om×q, γ > 0 (6)
and Sector Constraints whenm = qwith

J−1
1 = Im, J2 = −

1
2
(α + γ )Im, J3 = −αγ Im. (7)

For the situation when J−1
1 = J3 = Om and J2 = −Im with

m = q, which corresponds to having the strict passivity constraint,
the well posedness of J1 does not need to be considered since there
is no reason to apply Schur complement here given the fact that
z⊤(t)J−1

1 z(t) = 0. As a result, one can use J−1
1 = Om in (4) directly

and no mathematical complications will be introduced in deriving
the corresponding synthesis conditions.

The following lemmas and definition are required for the
mathematical derivations in this paper.

Lemma 1. ∀P ∈ Rp×q and ∀Q ∈ Rn×m, we have

(P ⊗ In)(Iq ⊗ Q ) =

Ip ⊗ Q


(P ⊗ Im). (8)

Moreover, we have ∀X ∈ Rn×m, ∀Y ∈ Rm×p

(XY ) ⊗ In = (X ⊗ In)(Y ⊗ In). (9)
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