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• Newmultiple integral inequalities are derived.
• A set of sufficient LMI stability conditions for time delay systems are derived.
• The LMI conditions are arranged into a bidirectional hierarchy.
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a b s t r a c t

This paper is devoted to stability analysis of continuous-time delay systems based on a set of
Lyapunov–Krasovskii functionals. Newmultiple integral inequalities are derived that involve the famous
Jensen’s and Wirtinger’s inequalities, as well as the recently presented Bessel–Legendre inequalities of
Seuret and Gouaisbaut (2015) and theWirtinger-based multiple-integral inequalities of Park et al. (2015)
and Lee et al. (2015). The present paper aims at showing that the proposed set of sufficient stability
conditions can be arranged into a bidirectional hierarchy of LMIs establishing a rigorous theoretical basis
for comparison of conservatism of the investigatedmethods. Numerical examples illustrate the efficiency
of the method.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Time delays are present in many physical, industrial and engi-
neering systems. The delays may cause instability or poor perfor-
mance of systems, therefore much attention has been devoted to
obtain tractable stability criteria of systemswith time delay during
the past few decades (see e.g. the monographs [1–3], some recent
papers [4–17] and the references therein). Several approaches have
been elaborated and successfully applied for the stability analy-
sis of time delay systems (see the references above for excellent
overviews).

Lyapunov method is one of the most fruitful fields in the sta-
bility analysis of time delay systems. On the one hand, more and
more involved Lyapunov–Krasovskii functionals (LKF) have been
introduced during the past decades. On the other hand, much ef-
fort has been devoted to derive more and more tight inequali-
ties (Jensen’s inequality and different forms ofWirtinger’s inequal-
ity [1,2,4–14,18,19], etc.) for the estimation of quadratic single,
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double and multiple integral terms in the derivative of the LKF. Si-
multaneously, augmented state vectors are introduced in part as a
consequence of the improved estimations, in part on an ad hoc
basis. The effectiveness of different methods is mainly com-
pared using some numerical examples. Recently, the authors of
[4,13] have introduced a very appealing idea of the hierarchy of LMI
conditions offering a rigorous theoretical basis for comparison of
stability LMI conditions. Based on Legendre polynomials, they pro-
posed a generic set of single integral inequalities opening the way
to the derivation of a set of stability conditions forming a hierarchy
of LMIs. A further possibility for the derivation of improved stabil-
ity conditions have been proposed by [5,6] using multiple integral
quadratic terms in the LKF, together with Wirtinger-based multi-
ple integral inequalities. Naturally the question arises: how these
two lines of investigations are related to each other, and how suf-
ficient stability conditions can be derived unifying the approaches
of using multiple integral quadratic terms in the LKF and refined
estimations of these integral terms.

The aim of the present work is to answer these questions. On
the one hand, multiple integral inequalities based on orthogonal
hypergeometric polynomials will be derived that extend the results
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of [4,13] to multiple integrals and improve the estimations of [5,6].
On the other hand, a multi-parametric set of LMI conditions will be
constructed, and it will be shown that a two parametric subset forms
a bidirectional hierarchy of LMIs.

Analogous results have been presented for discrete-time
systems in [20].

The paper is organized as follows. In Section 2 it is shown,
how the quadratic terms of the derivative of the LKF can be
estimated by Bessel-type inequalities. It is also proven that these
estimations relevantly improve a recently published result. A
sufficient condition of asymptotic stability is presented in the
form of an LMI in Section 3. The hierarchy of LMI conditions
is established then in Section 4. Some benchmark numerical
examples are shown in Section 5, the results of which are
compared to earlier ones known from the literature. Finally, the
conclusions will be drawn.

The notations applied in the paper are very standard, therefore
we mention only a few of them. Symbol A ⊗ B denotes the
Kronecker-product of matrices A, B, while Sn and S+

n are the set of
symmetric and positive definite symmetric matrices of size n × n,
respectively.

2. Multiple integral inequalities

2.1. Preliminaries

The paper deals with the stability analysis of the following
continuous-time delay system

ẋ(t) = Ax(t) + Ad1x(t − τ) + Ad2

 t

t−τ

x(s) ds, t ≥ 0, (1)

x0(t) = ϕ(t), t ∈ [−τ , 0], (2)

where x(t) ∈ Rnx is the state, A, Ad1and Ad2 are given constant
matrices of appropriate size, the time delay τ is a known positive
constant and x0(·) is the initial function.
(A.) A Bessel-type inequality. Let E be a Euclidean space with the
scalar product ⟨·, ·⟩, and let πj ∈ E, (j = 0, 1, . . .) form an
orthogonal system. Let n ≥ 1 be a given integer. For any f , g ∈ En,
define ⟨f , g⟩ =

n
i=1⟨fi, gi⟩. Let W ∈ S+

n . For any f ∈ En, consider
the functional

JW (f ) = ⟨f ,Wf ⟩. (3)

Lemma 1. If ν ≥ 0 is a given integer, then the following inequality
holds

JW (f ) ≥

ν
j=0

1πj
2 wT

j Wwj, (4)

where wj = ⟨f , πj⟩, and the scalar product is taken componentwise.

Proof. The proof is standard, therefore it is omitted.

(B.) Orthogonal hypergeometric polynomials. Suppose that ℓ ≥ 0 is a
given integer and consider the closed interval [a, b]. For functions
g1, g2 ∈ L2[a, b] define a scalar product by

⟨g1, g2⟩ℓ,[a,b] =

 b

a


s − a
b − a

ℓ

g1(s)g2(s) ds. (5)

It is easy to see that ⟨g1, g2⟩ℓ,[a,b] can equivalently be expressed as

⟨g1, g2⟩ℓ,[a,b]

=
ℓ!

(b − a)ℓ

 b

a

 b

v1

· · ·

 b

vℓ

g1(s)g2(s) ds dvℓ . . . dv1,

if ℓ > 0. (6)

(If ℓ = 0, then a single integral is considered.) Substitute s ∈ [a, b]
by s = a + (b − a)x, where x ∈ [0, 1], and set Gi(x) = gi(a + (b −

a)x), (i = 1, 2) on the right hand side of (5), then we obtain that

⟨g1, g2⟩ℓ,[a,b] = (b − a)
 1

0
xℓG1(x)G2(x) dx

= (b − a)⟨G1,G2⟩ℓ,[0,1]. (7)

Thus it is sufficient to consider the orthogonal polynomials with
respect to ⟨·, ·⟩ℓ,[0,1].

For any fixed non-negative integer ℓ, let us denote by Pℓ,n, (n =

0, 1, . . .) the polynomials of degree n orthogonal with respect to
⟨·, ·⟩ℓ,[0,1]. (For general theory see e.g. [21].) They can be given by
the two parameters generalization of the Rodrigues-formula:

Pℓ,0(x) ≡ 1, (8)

Pℓ,n(x) =
1
n!

1
xℓ

dn

dxn

xℓ(x2 − x)n


, n = 1, 2, . . . (9)

For ℓ = 0, this is the usual Rodrigues formula for the shifted
Legendre polynomials.

Wenote that polynomials (8)–(9) satisfy certain hypergeometric-
type differential equation (see e.g. [22,23]). This is why they are
frequently called ‘‘orthogonal hypergeometric polynomials’’. By
straightforward calculation, it can be shown that they have the
properties

(i) Pℓ,n(x) = (−1)n
n

k=0

(−1)k

n
k


ℓ + k + n

ℓ + k


xk,

ℓ, n ≥ 0, (10)

(ii)
Pℓ,n

2
ℓ,[0,1] =

 1

0
xℓP2

ℓ,n(x) dx =
1

ℓ + 2n + 1
, (11)

(iii) Pℓ,n(0) = (−1)n
ℓ + n
n

, Pℓ,n(1) = 1. (12)

The polynomials

pℓ,n(t) = Pℓ,n


t − a
b − a


(13)

are orthogonal with respect to the scalar product (5), andpℓ,n
2

ℓ,[a,b] =
b − a

ℓ + 2n + 1
,

pℓ,n(a) = (−1)n
ℓ + n
n

, pℓ,n(b) = 1. (14)

In what follows, polynomials qℓ,ℓ+j(x) = xℓPℓ,j(x) (for ℓ > 0, j =

0, 1, . . .) and d
dxqℓ,ℓ+j(x) (for ℓ ≥ 0, j = 0, 1, . . .) have to

be expressed in terms of the shifted Legendre polynomials P0,0,
P0,1, . . . . To this end, consider the nonnegative integers n1 ≤

n2, K , and introduce the notations

Xn1,n2 =

xn1 , xn1+1, . . . , xn2

T
,

Πℓ,K (x) =

Pℓ,0(x), Pℓ,1(x), . . . , Pℓ,K (x)

T
,

Dn1,n2 = diag {n1, n1 + 1, . . . , n2} ,

and G(ℓ, K) ∈ R(K+1)×(K+1) with elements G(ℓ, K)1,1 = 1,
G(ℓ, K)l,k = 0, if 1 ≤ l < k ≤ K + 1,

G(ℓ, K)l+1,k+1 = (−1)l+k
k−1
j=0

l − j
k − j

l
i=1

ℓ + k + i
i

,

if l = 1, . . . K , k = 0, . . . , l,

(The void product equals to 1 by definition.)
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