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a b s t r a c t

This note proposes ILC for discrete-time affine nonlinear systemswith randomly iteration varying lengths.
No prior information on the probability distribution of random iteration length is required prior for
controller design. The conventional P-type update law is used with a modified tracking error because
of randomly iteration varying lengths. A novel technical lemma is proposed for the strict convergence
analysis in pointwise sense. An illustrative example verifies the theoretical results.
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1. Introduction

Iterative Learning Control (ILC) is a kind of intelligent control
approach that is suitable for controlled systems completing given
task in a finite interval repeatedly. The inherent idea of ILC is learn-
ing from past experiences and performing to the current process.
To be specific, in ILC, the control signal is updated iteratively us-
ing information generated fromprevious iterations, so that the sys-
tem output could track the desired trajectory asymptotically along
the iteration index. The concept of ILC is first proposed by Arimoto
in [1] driven from human learning ability to robotic systems. As
has been developed for three decades, ILC has become a hot field
of intelligent control theory, which is fruitful both in theoretical
analysis and practical applications [2–4]. However, in most of the
reported results, the operation length and reference trajectory are
usually unchanged in different iterations, so that the update law
could improve the tracking performance gradually. This condition
may limit the applicability of ILC, and it motivates us to consider
ILC problem under iteration varying factors.

Some previous publications have discussed the problem of ILC
with varying references. Saab et al. studied ILC for continuous-time
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nonlinear systems with slowly varying references in [5], where
D-type, PD-type, and PID-type update law were used to generate
the control signal for tracking problem, respectively. The reference
of each iteration was assumed to have a small deviation with that
of the previous iteration. Xu proposed a direct learning control
approach in [6,7] to handle two cases of varying references. One
case is that the references have an identical spacial pattern but
different time scales, andwhile the other one is that the references
have an identical time scale but different magnitudes scales.
Recently, in [8] Chi et al. proposed an adaptive ILC approach to cope
with a class of high-order discrete-time systemwith the references
being iteration-varying. The authors provided iteration-recursive
algorithms to estimate parameters and generate corresponding
input signals. However, the iteration length is still unchanged in
these studies except [7].

Thus one is interested in the tracking abilitywhen the operation
length varies randomly during different iterations. This situation
also exists in some ILC applications [9,10]. The biomedical systems,
functional electrical stimulation for upper limb movement and for
gait assistance, were given in [9], and a humanoid robot study
was provided in [10]. In these equipments, the learning process
could not be with the same length every iteration because of
complex factors and unknown dynamics. As one could see, the
iteration-varying length would lead to varying outputs, which
further results in different signals in different iterations. To cope
with this issue, [11] introduced an iteration-average operator and
then designed an ILC algorithm for discrete linear systems. It was
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shown that the tracking error and input error would converge to
zero in mathematical expectation sense. However, few results on
nonlinear system are reported.

This note proceeds to consider the ILC problem for nonlinear
discrete-time systems with iteration varying lengths. There are
three major differences between [11] and the current paper. First
of all, an iteration-average operator was introduced in [11] for
update law design, and thus all historical data should be stored for
sustained updating. In this paper, the conventional P-type update
law is used only with a modified tracking error. We will show that
the simple P-type ensures a good tracking performance. Moreover,
the conventional λ-norm technique was used in [11], while in
this paper, we make a modification on the definition of λ-norm
so that it becomes more appropriate for the randomly varying
length problem. Last but not least, a stronger convergence result
is obtained in this note. In [11], the expectation of the tracking
error is shown to converge to zero, while this note provides the
almost sure convergence of the tracking error. To be specific, the
zero-error tracking performance is proved when the initial state is
accurately reset, while for the case of initial shifts, it is shown that
the tracking error is bounded in proportion to the bound of initial
state bias.

In practical applications, the actual operation length may be
greater or smaller than the expected length. If the actual length
is greater than the expected length, then the redundant signals are
discarded as none information could be gotten from this signals.
Therefore, this case could be regarded as the full-length case as
long as one directly cut the trajectory at the position of expected
length. If the actual length is smaller than the expected length, then
the signals at the missing time instances cannot be obtained, thus
no information could be used to update the input. As a result, for
expression to be concise, only the case that the actual length is no
greater than the expected one is taken into account in this note.

The rest of the note is arranged as follows: Section 2 gives
the problem formulation; Section 3 presents the design of ILC
algorithm, while its convergence analysis is provided in Section 4;
illustrative simulations are shown in Section 5 and Section 6
concludes this note.

Notations: ∥M∥ denotes the Euclidean norm of a square matrix
M . σ(M) is the eigenvalue of M . R is the set of real numbers,
while Rm is the m-dimensional space. E(·) and P(·) denote the
mathematical expectation and probability, respectively. ∥θ(t)∥λ

denotes the λ-norm of a vector θ(t), λ > 0, which is defined as
∥θ(t)∥λ = supt∈S α−λtE∥θ(t)∥ where α > 1 is a suitable selected
constant and S is a finite discrete set of t . In×n denotes the unit
matrix with dimension n × n, and the subscript n × n may be
omitted when no misunderstanding is caused. Let 1(event) be an
indicator function meaning that it equals 1 if the event indicated
in the bracket is fulfilled, and 0 if the event does not hold.

2. Problem formulation

Consider the following discrete affine nonlinear system

xk(t + 1) = f (xk(t)) + Buk(t)
yk(t) = Cxk(t)

(1)

where k = 0, 1, . . . denotes iteration index, t is time instance,
t ∈ {0, 1, . . . ,Nd}, and Nd is the expected iteration length. xk(t) ∈

Rn, uk(t) ∈ Rp, and yk(t) ∈ Rq denote state, input, and output,
respectively. f is the nonlinear function. C and B are matrices with
appropriate dimensions. Without loss of generality, it is assumed
that CB is of full-column-rank.

Remark 1. Matrices B and C are assumed time-invariant in system
(1) to make the expressions concise. They can be extended to
the time-varying case, B(t) and C(t), and/or state dependent case,

B(x(t)), without making any further effort (see the analysis details
below). Moreover, it will be shown that the convergence condition
is independent of f (·) in the following. This is the major advantage
of ILC, that is, ILC focuses on the convergence property along
iteration axis and requires little system information. In addition,
it is evident that the nonlinear function could be time varying.

Let yd(t), t ∈ {0, 1, . . . ,Nd} be the desired trajectory. yd(t) is
assumed to be realizable, that is, there is a suitable initial state
xd(0) and unique input ud(t) such that

xd(t + 1) = f (xd(t)) + Bud(t)
yd(t) = Cxd(t).

(2)

The following assumptions are required for the technical
analysis.

A1. The nonlinear function f (·) : Rn
→ Rn satisfies global

Lipschitz condition, that is, ∀x1, x2 ∈ Rn,

∥f (x1) − f (x2)∥ ≤ kf ∥x1 − x2∥ (3)

where kf > 0 is the Lipschitz constant.

The global Lipschitz condition on nonlinear function is some-
what strong, although it is common in the ILC field for nonlinear
systems. However, it should be pointed out that this assumption
is imposed to facilitate the convergence derivations using λ-norm
technique. With more efforts, the assumption could be extended
to local Lipschitz case or continuous case [12,13].

A2. The identical initial condition is fulfilled, i.e., xk(0) = xd(0),∀k.

The initial state may not be reset precisely every iteration in
practical applications, but the bias is usually bounded. Thus one
would relax the assumption A2 to the following one.

A3. The initial state could shift from xd(0) but should be bounded,
i.e., ∥xd(0) − xk(0)∥ ≤ ϵ where ϵ is a positive constant.

Let Nd denote the expected length. The actual length, Nk, varies
in different iterations randomly. Thus, two cases need to be taken
into account, i.e., Nk < Nd and Nk ≥ Nd. For the latter case, it
is observed that only the data at the first Nd time instances are
used for input updating. In a consequence, without loss of any
generality, one could regard the latter case as Nk = Nd. From
another point of view, one could regardNd as themaximum length
of actual lengths. For the former case, the outputs at the time
instance Nk + 1, . . . ,Nd are missing, and therefore, they are not
available for updating. In other words, the input signals for the
former Nk time instances are only updated.

The control objective of this note is to design ILC algorithm to
track the desired trajectory yd, t ∈ {0, 1, . . . ,Nd}, based on the
available output yk(t), t ∈ {0, 1, . . . ,Nk}, Nk ≤ Nd, such that the
tracking error ek(t), ∀t converges to zero with probability one as
the iteration number k goes to infinity.

The following lemma is needed for the following analysis, and
its proof is put in the Appendix.

Lemma 1. Let η be a Bernoulli binary random variable with P(η =

1) = η and P(η = 0) = 1 − η. M is a positive matrix. Then the
equality E∥I − ηM∥ = ∥I − ηM∥ holds if and only if one of the
following conditions is satisfied: (1) η = 0; (2) η = 1; and (3) 0 <
η < 1 and 0 < M ≤ I .

3. ILC design

In this note, theminimum length is denoted byNm. Then the op-
eration length varies among the discrete integer set {Nm, . . . ,Nd},
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