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h i g h l i g h t s

• Suppose a compensator is specified so as to alter the transfer function of the system
• Suppose state feedback is applied to the system to realize the compensation
• Non-square compensators result in non-regular state feedback
• Such a feedback law is not unique and affects the controllability of the system
• Conditions are determined for a stable match to exist
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a b s t r a c t

In some control problems, it is convenient to use a precompensator to alter the transfer function of the
system such that the transfer function of the compensated system has a specified property. Then, if pos-
sible, the action of the compensator on the system is realized by a static state feedback law applied to the
system.When the compensator is square and non-singular, the state feedback is regular and the problem
has already been solved. Non-square compensators, however, result in non-regular state feedback. In this
paper, necessary and sufficient conditions are presented for the compensated system to be stabilizable
by such a non-regular static state feedback law.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A control law that is widely used in theory and applications
is static state feedback. In some problems, however, the specifi-
cations are given in terms of the closed-loop transfer function.
Examples include decoupling, model matching, and disturbance
rejection. Although these problems can be solved using the state
space formalism [1], an alternative way to tackle them is to use
a precompensator to alter the transfer function of the system so
as the transfer function of the compensated system has a speci-
fied property. Then, it is investigated whether there exists a state
feedback having the same input–output effect that the given prec-
ompensator.

✩ The preliminary version of the paper was presented at and published in the
proceedings of the 52nd IEEE Conference on Decision and Control, which was held
in Florence, Italy during December 10–13, 2013.
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Thus, the key problem consists in finding conditions under
which the desired compensator is static state feedback realizable.
In fact, necessary and sufficient conditions exist in the literature.
The seminal work was published by Hautus and Heymann [2] for
nonsingular compensators. The realizability conditions are stated
in terms of a polynomial matrix description of the system. Isidori
and Morse [3] gave necessary and sufficient conditions in terms of
the McMillan degree of a rational matrix. Castro and Ruiz-León [4]
presented equivalent realizability conditions using structural in-
variants of the system. The general case of non-square full column
rank compensatorswas considered by Kučera andHerrera [5], Her-
rera [6,7], and Castañeda and Ruiz-León [8], where different realiz-
ability conditions are presented. In fact, the conditions given in [5]
are based on a polynomial matrix description of the system, the
conditions in [6] are expressed in terms of a constant basis for the
left kernel of a rational matrix, and the conditions presented in [8]
make use of structural invariants of the system.

When a compensator is static state feedback realizable, then
stability of the compensated closed-loop system is an issue.
The first necessary and sufficient condition for the compensated
system to be asymptotically stable was given by Kučera [9] in the
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case of nonsingular compensators. The condition is expressed in
terms of a polynomial matrix description of the system. For non-
square full column rank compensators, a similar stability condition
was provided by Kučera and Herrera [5] which, however, turned
out to be only sufficient. Thus, stabilizability by non-regular static
state feedback, when realizing the action of a non-square full
column rank compensator on the given system, remains an open
problem.

In this paper, we present necessary and sufficient conditions
under which the compensated system can be stabilized. The dif-
ficulty of the problem arises from two facts. Firstly, non-regular
state feedback that realizes a given non-square full rank compen-
sator is not unique. Secondly, non-regular state feedback affects
controllability of the compensated system. To solve the problem,
we show that the controllable part of the compensated system is
the same for any feedback used to realize the compensator, and
that the freedom inherent in this feedback can be used to alter
the uncontrollable part of the compensated system. Thus, condi-
tions are obtained under which the compensated system can be
rendered asymptotically stable.

2. Preliminaries

Throughout the paper, R denotes the field of real numbers.
Accordingly, Rn stands for the n-vector space over R and Rm×r

stands for the set ofm× r matrices with entries in R. Finally, Rp(s)
denotes the ring of proper rational functions over R and Rm×r

p (s)
denotes the set ofm × r matrices with entries in Rp(s).

Let (A, B, C,D) be a state space representation of a linear time-
invariant differential system described by the equations

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

(1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp are the state, input and output
vectors of the system, respectively. The transfer function matrix of
the system is given by

T (s) = C(sI − A)−1B + D. (2)

Consider a static state feedback law (F ,G) of the form

u(t) = Fx(t) + Gv(t), (3)

where v ∈ Rr is a new input vector, F ∈ Rm×n and G ∈ Rm×r with
rankG = r . The closed-loop system defined by (1) and (3) then
gives rise to the transfer function matrix

TF ,G(s) = (C + DF)(sI − A − BF)−1BG + DG. (4)

If r = m (matrix G is square and nonsingular), then (3) is said
to be regular state feedback, and if r < m, then (3) is said to be
non-regular state feedback.

After some algebraic manipulations, (4) can be expressed as

TF ,G(s) = T (s)W (s), (5)

where

W (s) =

I − F(sI − A)−1B

−1
G (6)

is a proper rational matrix. In the case of regular state feedback,
(6) is a biproper matrix, i.e. a square proper rational matrix whose
inverse exists and is also proper rational. In the case of non-regular
state feedback, (6) is column biproper, i.e.

rank lim
s→∞

W (s) = r

holds so thatW (s) can be completed to a biproper matrix.

Thus, the action of state feedback (F ,G) on the system (A, B,
C,D) can be represented in transfer function form as the
postmultiplication of the system transfer functionmatrix T (s) by a
proper rational matrixW (s).

The converse problem, i.e. under which conditions a proper ra-
tional matrix that postmultiplies T (s) can be realized using a static
state feedback law applied to the system, is known as feedback re-
alizability of compensators. Then, a given proper rational compen-
sator W (s) is said to be feedback realizable if there exists a static
state feedback control law (F ,G) such that (6) holds.

Feedback realization of compensators is useful in problems
where, evenwhen state feedback is to be applied, the specifications
are given in terms of the transfer functionmatrix of the closed-loop
system. For example, in decoupling where the closed-loop transfer
function matrix is to be diagonal, or in model matching where it is
to match a desired transfer function matrix.

Conditions for static state feedback realization of compensators
are well known. The following result applies to square nonsingular
compensators.

Lemma 1 ([2]). Given a system (A, B, C,D), let Q (s), P(s) be right
coprime polynomial matrices such that

(sI − A)−1B = Q (s)P−1(s)

and let W (s) ∈ Rm×m
p (s) be a nonsingular compensator. ThenW (s) is

feedback realizable if and only if

(a) W (s) is biproper, and
(b) W−1(s)P(s) is a polynomial matrix. �

The required regular static state feedback is linked to a constant
solution (U, V ) of the polynomial equation [9]

W−1(s)P(s) = UP(s) + VQ (s),

where U is a nonsingular matrix. Then the regular static state
feedback realizing the compensator is given by

F = −U−1V , G = U−1.

The following result applies to non-square full column rank
compensators.

Lemma 2 ([6]). Given a system (A, B, C,D) and let W (s) ∈ Rm×r
p (s)

be a full column rank compensator. Then W (s) is feedback realizable
if and only if the left Kronecker indexes1 {µi} of the matrix

H(s) :=


(sI − A)−1BW (s)

W̄ (s)


where W̄ (s) is the strictly proper part of W (s), satisfy the following
two conditions:

(a) For some integer q,

µ1 = · · · = µm+q = 0
0 < µm+q+1 ≤ µn+m−p

p := rank H(s).

(b) Among the rows corresponding to µ1, . . . , µm+q in a minimal
basis for the left kernel of H(s), there exist m rows that

1 A minimal basis for the left kernel of a proper rational matrix H(s) is given by a
set of polynomial vectors such that the sumof their degrees isminimal. Theminimal
degrees {µi} of the polynomial vectors in a minimal basis for the left kernel of H(s)
correspond to the left Kronecker indexes of H(s) [10].
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