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a b s t r a c t

In this work, we consider the reduction of information transmission frequency of distributed moving
horizon estimation (DMHE) for a class of nonlinear systems in which interacting subsystems exchange
information with each other through a shared communication network. Specifically, algorithms based on
two event-triggered methods are proposed to reduce the number of information transmissions between
the subsystems in a DMHE scheme. In the first algorithm, a subsystem sends out its current information
when a triggering condition based on the difference between the current state estimate and a previously
transmitted one is satisfied; in the second algorithm, the transmission of information from a subsystem
to other subsystems is triggered by the difference between the currentmeasurement of the output and its
derivatives and a previously transmitted measurement. In order to ensure the convergence and ultimate
boundedness of the estimation error, we also propose to redesign the local moving horizon estimator of a
subsystem to account for the possible lack of state updates from other subsystems explicitly. A chemical
process is utilized to demonstrate the applicability and performance of the proposed approaches.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Due to the increasing global competition, large-scale complex
chemical processes are common appearances in the modern
process industry due to their economic efficiency. Distributed
model predictive control (DMPC) has emerged as an attractive
control approach to handle the scale and interactions of large-scale
complex chemical processes (e.g., [1,2]). It has been demonstrated
that DMPC can achieve improved closed-loop performance while
preserving the flexibility of the decentralized framework [3,4].
However, most of the existing DMPC designs were developed
under the assumption that the state measurements of subsystems
are available. It is in general difficult to measure all the state
variables in a process system. This makes state estimation very
important in feedback control. For nonlinear systems, observer
design problems are challenging and have attracted significant
attention (e.g., [5–8]). However, the majority of these results were
obtained in a centralized framework.

It is desirable to adopt distributed (or decentralized) state esti-
mation methods along with a distributed optimal control system
like DMPC to maintain the structural flexibility. In the literature,
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there are existing results on decentralized observer designs for dif-
ferent classes of systems (e.g., [9–11]) and distributed Kalman fil-
tering based on consensus algorithms with applications to sensor
networks (e.g., [12–14]). These results are primarily developed for
linear systems. Recently, a distributed moving horizon estimation
(DMHE) approach was first developed for linear systems [15] and
then extended to nonlinear systems [16]. Along this line of work,
in [17,18], DMHE schemes based on subsystem models were de-
veloped for both linear and nonlinear systems. Because the above
DMHE schemes were developed based on the classical centralized
moving horizon estimation (MHE) [19,20], they maintain the ad-
vantages ofMHE including the ability to handle nonlinearities, con-
straints and optimality considerations explicitly. However, as in
the centralizedMHE, the convergence of the estimates of the above
DMHE schemes to the actual system state requires a reliable ap-
proximation of the arrival costwhich is in general a difficult task for
constrained nonlinear systems.Moreover, the convergence rates of
the estimates given by the above DMHE schemes to the actual sys-
tem states are not tunable which is not favorable from an output
feedback control point of view.

To address the above issues, in our previous work [21], we de-
veloped a robust DMHEdesign for a class of nonlinear systemswith
bounded uncertainties. In the design of a local MHE, an auxiliary
nonlinear deterministic observer was taken advantage of to cal-
culate a confidence region for the state estimate every sampling
time. The estimate of the local MHE is restricted within the con-
fidence region. This approach was demonstrated to reduce the ef-
fect of poorly approximated arrival cost and was proved to lead
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to bounded estimation error with potential tunable convergence
rates. It, however, requires the subsystems to exchange informa-
tion every sampling time. The frequent information transmission
requirementmay impede the application of theDMHE to processes
that have a shared communication network with limited capacity.
Moreover, extensive information exchanging may reduce the ro-
bustness of the system due to data dropouts in the communication
network.

Motivated by the above observations, in this work, we propose
two algorithms to reduce the number of information transmis-
sions between subsystems based on the DMHE framework de-
veloped in [21] via event-triggered approaches. Event-triggered
approaches have been widely used in the design of control sys-
tems that have shared communication and computation resources
(e.g., [22–24]). Event-triggered approaches have also been adopted
in state estimation in wireless sensor networks (see, e.g., [25,26])
to reduce information transmission in the network while main-
taining stability and performance. In these results, a centralized
model in general is used to design the centralized/distributed es-
timators. Reviews of results on event-triggered feedback in con-
trol and estimation can be found in [27,28].Within process control,
in [29], a coordinated quasi-decentralized framework was devel-
oped tominimize the information exchange for networked control
systems. The quasi-decentralized framework was recently utilized
in the design of an output feedbackmodel predictive control (MPC)
with an adaptive forecast-triggered communication strategy to
minimize the number of information transmissions from a super-
visory observer to local controllers [30]. In [31], an event-based ap-
proachwas adopted to reduce the evaluation times of a centralized
MHE–MPC system. In [31], the triggering condition was designed
in a centralized manner based on output and its derivative mea-
surements.

The contributions of the present work are as follows: (1) the
design of triggering conditions for state estimation system in the
DMHE framework for nonlinear systems; (2) the development
of two different triggering conditions for a DMHE scheme; and
(3) the rigorous stability analysis of the DMHE scheme with the
two triggering conditions. Specifically, in this work, in the first
proposed algorithm, a subsystem sends out its current information
when a triggering condition based on the difference between the
current state estimate and a previously transmitted state estimate
is satisfied; in the second proposed algorithm, the transmission
of information from a subsystem to other subsystems is triggered
by the difference between the current measurement of the output
and its derivatives and a previously transmitted measurement. In
order to ensure the convergence and ultimately boundedness of
the estimation error, the local MHE of a subsystem also needs to
be redesigned to account for the possible lack of state updates
from other subsystems. Sufficient conditions for the proposed
DMHE implemented following the two algorithms to ensure the
convergence and ultimately boundedness of the estimation error
are derived. The application to a chemical process illustrates
the effectiveness of the proposed approaches in reducing the
number of information transmissions between the subsystems
while maintaining the estimation performance.
Notation. The operator | · | denotes Euclidean norm while | · |Q

indicates the weighted Euclidean norm, defined as |x|Q =


xTQx

where Q is a positive definite square matrix. A function f (x) is said
to be locally Lipschitz with respect to x if there exists a positive
constant Lxf such that |f (x′) − f (x′′)| ≤ Lxf |x

′
− x′′

| for all x′ and x′′

in a given region of x and Lxf is the Lipschitz constant. A function
β(r, s) is said to be a class KL function if for each fixed s, β(r, s)
is strictly increasing and satisfies β(0, s) = 0with respect to r , and
for each fixed r , it is decreasing with respect to s, and β(r, s) → 0
as s → ∞. The symbol diag(v) denotes a diagonal matrix whose

diagonal elements are the elements of vector v. The superscript (s)
denotes the s-th order time derivative of a function. The symbol Lf h
denotes the Lie derivative of function h with respect to f , defined
as Lf h(x) =

∂h
∂x f (x) while Lrf h denotes r-th order Lie derivative,

defined as Lrf h(x) = Lf Lr−1
f h(x). A matrix (or vector) A+ denotes

the pseudoinverse of a matrix (or vector) A.

2. Preliminaries

2.1. Problem formulation

In thiswork,we consider a class of nonlinear systems composed
ofm interconnected subsystems. Each subsystem can be described
by the following state-space model:

ẋi(t) = fi(xi(t), wi(t))+ f̃i(Xi(t))
yi(t) = hi(xi)+ vi(t)

(1)

where i = 1, . . . ,m, xi(t) ∈ Rnxi denotes the vector of state vari-
ables of subsystem i, wi(t) ∈ Rnwi denotes disturbances associ-
ated with subsystem i, and the vector function fi characterizes the
dependence of the dynamics of xi on itself and the associated dis-
turbances. The vector function f̃i characterizes the interactions be-
tween subsystem i and other subsystems. The vector yi ∈ Rnyi is
the measured output of subsystem i and vi ∈ Rnvi is a measure-
ment noise vector. The state vector Xi(t) is composed of subsystem
states involved in the expression of the interaction of subsystem i
with other subsystems. Specifically, we use Ii, i = 1, . . . ,m, to de-
note the set of subsystem indices whose corresponding subsystem
states are involved in Xi. It should be noted that xi may be involved
in Xi. Moreover, we use the set Ci, i = 1, 2 . . . ,m, to denote the
set of subsystems whose dynamics has dependence on xi. The sub-
system states xi, i = 1, . . . ,m, are assumed to be contained in
convex compact sets such that xi ∈ Xi, i = 1, . . . ,m. It is also
assumed that the system disturbances andmeasurement noise are
bounded such that wi ∈ Wi and vi ∈ Vi, i = 1, . . . ,m, where
Wi := {wi ∈ Rnwi : |wi| ≤ θwi},Vi := {vi ∈ Rnvi : |vi| ≤ θvi} with
θwi and θvi , i = 1, . . . ,m, known positive real numbers.

The entire nonlinear system state vector and measured output
vector are denoted as x and y which are composed of the states
and outputs of the m subsystems, respectively. That is x =

[xT1 · · · xTi · · · xTm]
T

∈ Rnx and y = [yT1 · · · yTi · · · yTm]
T

∈ Rny . The
entire system can be described as follows:

ẋ(t) = f (x(t), w(t))+ f̃ (x(t))
y(t) = h(x(t))+ v(t)

(2)

where f , f̃ , w, h, and v are appropriate compositions of fi, f̃i, wi, hi,
and vi, i = 1, . . . ,m, respectively.

2.2. Modeling of measurements

In this work, we consider that the outputs of them subsystems,
yi, i = 1, . . . ,m, are sampled synchronously and periodically at
time instants {tk≥0} such that tk = t0 + k∆ with t0 = 0 the initial
time, ∆ a fixed sampling time interval and k positive integers. It
is also assumed that the measurements of the time derivatives of
the outputs, ẏi, . . . , y

(n−1)
i , i = 1, . . . ,m, are available at each

sampling time. The two assumptions imply that a measurement
of the following vector is available for each subsystem at each
sampling time:

Yi(t) =


yi(t)
ẏi(t)
...

y(n−1)
i (t)


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